Our results, as well as those of others, have indicated that 17β-estradiol (E2) exerts its nongenomic effects in neuronal cells by affecting plasma membrane Ca(2+) flux. In neuronal cells mitochondria possess Ca(2+) buffering properties as they both sequester and release Ca(2+). The goal of this study was to examine the rapid non-genomic effect of E2 on mitochondrial Ca(2+) transport in hippocampal synaptosomes from ovariectomised rats. In addition, we aimed to determine if, and to what extent, E2 receptors participated in mitochondrial Ca(2+) transport modulation by E2 in vitro. E2-specific binding and Ca(2+) transport was monitored. At physiological E2 concentrations (0.1-1.5 nmol/L), specific E2 binding to mitochondria isolated from hippocampal synaptosomes was detected with a B(max.) and K(m) of 37.6±2.6 fmol/mg protein and 0.69±0.14 nmol/L of free E2, respectively. The main mitochondrial Ca(2+) influx mechanism is the Ruthenium Red-sensitive uniporter driven by mitochondrial membrane potential. Despite no effect of E2 on Ca(2+) influx, a physiological E2 concentration (0.5 nmol/L) protected mitochondrial membrane potential and consequently Ca(2+) influx from the uncoupling agent carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (1 μmol/L). In neuronal cells the predominant mitochondrial Ca(2+) efflux mechanism is the Na(+)/Ca(2+) exchanger. E2 caused Ca(2+) efflux inhibition (by 46%) coupled with increased affinity of the Na(+)/Ca(2+) exchanger for Na(+). Using E2 receptor (ERα and ERβ) antagonists and agonists, we confirmed ERβ's involvement in E2-induced mitochondrial membrane potential protection as well as Ca(2+) efflux inhibition. In summary, our results indicate that the non-genomic neuromodulatory role of E2 in rat hippocampus is achieved by affecting mitochondrial Ca(2+) transport via, in part, mitochondrial ERβ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2011.06.030 | DOI Listing |
Curr Biol
January 2025
Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden. Electronic address:
To propagate their genetic material, flowering plants rely on the production of large amounts of pollen grains that are capable of germinating on a compatible stigma. Pollen germination and pollen tube growth are thought to be extremely energy-demanding processes. This raises the question of whether mitochondria from pollen grains are specifically tuned to support this developmental process.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.
Background: Acute myocardial infarction (AMI), a subset of acute coronary syndrome, remains the major cause of mortality worldwide. Mitochondrial dysfunction is critically involved in AMI progression, and mitophagy plays a vital role in eliminating damaged mitochondria. This study aimed to explore mitophagy-related biomarkers and their potential molecular basis in AMI.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
January 2025
MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Guizhou Key Laboratory of New Quality Processing and Storage of Ecological Specialty Food; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
Traditional dry-curing methods have a long cycle time and low efficiency, resulting in the inconsistent quality of dry-cured ham. By applying electrical stimulation (ES) technology in the dry-curing process, it was found that ES affected mitochondrial apoptosis by modulating the intracellular environment of muscle cells, which, in turn, enhanced the quality of dry-cured pork loin. Specifically, ES accelerated glycogen and ATP depletion, which led to a rapid decline in pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!