Endocrine disruptors (EDs) affect the function of animal reproductive systems. Recently, 2,2',4,4'-tetrahydroxybenzophenone (BP2), which is a component of UV protection products, was found to be an ED that interferes with the thyroid hormone (TH) axis. However, BP2 activity in the testis has not been well addressed. In this study, we have examined the effects of BP2 on steroidogenesis in testicular Leydig cells in connection with thyroid hormone signaling, which is known to play an important role in testicular development and function. Our study showed that BP2 affected the expression of steroidogenic enzyme genes in testicular Leydig cells, which is differentially regulated by thyroid hormone/thyroid hormone receptor (TR) signaling. In MA-10 Leydig cell line, TR/T3 signaling increased the expression of P450c17 and P450scc, while it decreased the expression of StAR and 3β-HSD. Interestingly, BP2 affected the expression of steroidogenic enzyme genes in a manner opposite to that of T3 signaling. BP2 downregulated the TRα/T3-activation of P450c17 and P450scc expression while enhancing the TRα/T3-repression of StAR and 3β-HSD expression. Transient transfection analyses with promoter-reporter constructs revealed that BP2 altered the expression of steroidogenic enzyme genes by affecting the cAMP and Nur77-activated promoter activity of P450c17, StAR, and 3β-HSD. Animal experiments with mice revealed that BP2 decreased the production of testosterone in the testis by affecting the expression of some steroidogenic enzyme genes in vivo. Together, these findings elucidate a molecular mechanism of BP2 action underlying testicular steroidogenesis and also suggest that BP2 acts, in part, as a thyroid antagonist that affects steroidogenesis in the testis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2011.06.013 | DOI Listing |
Gen Comp Endocrinol
January 2025
Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
Cytochrome P450 17A1 (CYP17A1) catalyzes two enzymatic reactions in the biosynthesis of dehydroepiandrosterone (DHEA) from pregnenolone. In pregnant humans, the adrenal gland is responsible for DHEA biosynthesis, which is then sulfated by SULT2A1 and released into the bloodstream. This sulfated DHEA is subsequently taken up by the placenta and deconjugated to serve as a precursor for estrogen biosynthesis.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy. Electronic address:
The central nervous system is a well-known steroidogenic tissue producing, among others, cholesterol metabolites such as neuroactive steroids, oxysterols and steroid hormones. It is well known that these endogenous molecules affect several receptor classes, including ionotropic GABAergic and NMDA glutamatergic receptors in neurons. It has been shown that also ionotropic purinergic (P2X) receptors are cholesterol metabolites' targets.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
Transcription factors (TFs), including steroidogenic factor-1 (SF-1), T-box transcription factor (TPIT) and pituitary transcription factor-1 (PIT-1), play a pivotal role in the cytodifferentiation of adenohypophysis. However, the impact of TFs on the growth patterns of nonfunctioning pituitary adenomas (NFPAs) remains unclear. This study aims to investigate the correlation between the expression of TFs and NFPAs growth patterns.
View Article and Find Full Text PDFSteroids
December 2024
Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziaba 201002, India. Electronic address:
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine and metabolic disorder associated with insulin resistance (IR) and hyperandrogenism. IR plays a crucial role in the etiology of PCOS. An insulin-sensitizing agent like metformin is most commonly used as an off-label drug for the treatment of PCOS.
View Article and Find Full Text PDFChemosphere
December 2024
Aquatic Science Center, Wisconsin Sea Grant, University of Wisconsin - Madison, Madison, WI, USA. Electronic address:
Aquatic herbicides are commonly used to control a variety of non-native plants. One common active ingredient used in commercial herbicide formulations globally is 2,4-dichlorophenoxyacetic acid (2,4-D). Though 2,4-D is used in aquatic ecosystems, no studies have investigated cellular, biochemical, and transcriptional effects or mechanisms of 2,4-D exposure on fathead minnows (Pimephales promelas) throughout juvenile development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!