The purpose of this study is to develop a rodent functional magnetic resonance imaging (fMRI) survival model with the use of heparin-coated vascular access devices. Such a model would ease the administration of sedative agents, reduce the number of animals required in survival experiments and eliminate animal-to-animal variability seen in previous designs. Seven male Sprague-Dawley rats underwent surgical placement of an MRI-compatible vascular access port, followed by implantable electrode placement on the right median nerve. Functional MRI during nerve stimulation and resting-state functional connectivity MRI (fcMRI) were performed at times 0, 2, 4, 8 and 12 weeks postoperatively using a 9.4T scanner. Anesthesia was maintained using intravenous dexmedetomidine and reversed using atipamezole. There were no fatalities or infectious complications during this study. All vascular access ports remained patent. Blood oxygen level dependent (BOLD) activation by electrical stimulation of the median nerve using implanted electrodes was seen within the forelimb sensory region (S1FL) for all animals at all time points. The number of activated voxels decreased at time points 4 and 8 weeks, returning to a normal level at 12 weeks, which is attributed to scar tissue formation and resolution around the embedded electrode. The applications of this experiment extend far beyond the scope of peripheral nerve experimentation. These vascular access ports can be applied to any survival MRI study requiring repeated medication administration, intravenous contrast, or blood sampling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156352PMC
http://dx.doi.org/10.1016/j.jneumeth.2011.06.018DOI Listing

Publication Analysis

Top Keywords

vascular access
20
access ports
12
fmri survival
8
survival model
8
median nerve
8
time points
8
access
5
long-term vascular
4
ports sedative
4
sedative administration
4

Similar Publications

With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Background: Early literature on the Woven EndoBridge (WEB) device reported 80-90% adequate aneurysm occlusion but low complete occlusion (40-55%). It is uncertain whether residual or recurrent aneurysms require re-treatment to prevent future rupture.

Objective: To systematically review the literature to meta-analyze occlusion and complication rates after re-treatment of these aneurysms.

View Article and Find Full Text PDF

Introduction: In recent years, intravitreal injections (IVT) of vascular endothelial growth factor (VEGF) inhibitors have become the standard of care for several macular disorders. Frequently, the therapeutic course requires numerous injections, posing a burden on patients. Non-adherence to treatment may result in reduced visual outcomes, therefore understanding and addressing the underlying causes is imperative.

View Article and Find Full Text PDF

Importance: Pediatric peripheral intravenous catheter (PIVC) insertion can be difficult and time-consuming, frequently requiring multiple insertion attempts and often resulting in increased anxiety, distress, and treatment avoidance among children and their families. Ultrasound-guided PIVC insertion is a superior alternative to standard technique (palpation and visualization) in high-risk patients.

Objective: To compare first-time insertion success of PIVCs inserted with ultrasound guidance compared with standard technique (palpation and visualization) across all risk categories in the general pediatric hospital population.

View Article and Find Full Text PDF

Background: Access-related vascular complications (VCs) after percutaneous transfemoral transcatheter aortic valve replacement (TAVR) are associated with poor clinical outcomes and remain a significant challenge despite technological advances. The aim of this study was to identify anatomic predictors of access-related VCs after TAVR on preprocedural contrast-enhanced multidetector computed tomography (MDCT).

Aims: The aim of this study was to identify anatomical predictors of access-related VCs after TAVR on preprocedural contrast-enhanced MDCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!