Unlabelled: Few plant pathogens have had a more profound effect on the evolution of disease management than Erysiphe necator, which causes grapevine powdery mildew. When the pathogen first spread from North America to England in 1845, and onwards to France in 1847, 'germ theory' was neither understood among the general populace nor even generally accepted within the scientific community. Louis Pasteur had only recently reported the microbial nature of fermentation, and it would be another 30 years before Robert Koch would publish his proofs of the microbial nature of certain animal diseases. However, within 6 years after the arrival of the pathogen, nearly 6 million grape growers in France were routinely applying sulphur to suppress powdery mildew on nearly 2.5 million hectares of vineyards (Campbell, 2006). The pathogen has remained a focus for disease management efforts ever since. Because of the worldwide importance of the crop and its susceptibility to the disease, and because conventional management with modern, organic fungicides has been compromised on several occasions since 1980 by the evolution of fungicide resistance, there has also been a renewed effort worldwide to explore the pathogen's biology and ecology, its genetics and molecular interactions with host plants, and to refine current and suggest new management strategies. These latter aspects are the subject of our review.
Taxonomy: The most widely accepted classification follows. Family Erysiphaceae, Erysiphe necator Schw. [syn. Uncinula necator (Schw.) Burr., E. tuckeri Berk., U. americana Howe and U. spiralis Berk. & Curt; anamorph Oidium tuckeri Berk.]. Erysiphe necator var. ampelopsidis was found on Parthenocissus spp. in North America according to Braun (1987), although later studies revealed isolates whose host range spanned genera, making the application of this taxon somewhat imprecise (Gadoury and Pearson, 1991). The classification of the genera before 1980 was based on features of the mature ascocarp: (i) numbers of asci; and (ii) morphology of the appendages, in particular the appendage tips. The foregoing has been supplanted by phylogeny inferred from the internal transcribed spacer (ITS) of ribosomal DNA sequences (Saenz and Taylor, 1999), which correlates with conidial ontogeny and morphology (Braun et al., 2002).
Host Range: The pathogen is obligately parasitic on genera within the Vitaceae, including Vitis, Cissus, Parthenocissus and Ampelopsis (Pearson and Gadoury, 1992). The most economically important host is grapevine (Vitis), particularly the European grape, V. vinifera, which is highly susceptible to powdery mildew. Disease symptoms and signs: In the strictest sense, macroscopically visible mildew colonies are signs of the pathogen rather than symptoms resulting from its infection, but, for convenience, we describe the symptoms and signs together as the collective appearance of colonized host tissues. All green tissues of the host may be infected. Ascospore colonies are most commonly found on the lower surface of the first-formed leaves near the bark of the vine, and may be accompanied by a similarly shaped chlorotic spot on the upper surface. Young colonies appear whitish and those that have not yet sporulated show a metallic sheen. They are roughly circular, ranging in size from a few millimetres to a centimetre or more in diameter, and can occur singly or in groups that coalesce to cover much of the leaf. Senescent colonies are greyish, and may bear cleistothecia in various stages of development. Dead epidermal cells often subtend the colonized area, as natural mortality in the mildew colony, the use of fungicides, mycoparasites or resistance responses in the leaf result in the deaths of segments of the mildew colony and infected epidermal cells. Severely affected leaves usually senesce, develop necrotic blotches and fall prematurely. Infection of stems initially produces symptoms similar to those on leaves, but colonies on shoots are eventually killed as periderm forms, producing a dark, web-like scar on the cane (Gadoury et al., 2011). Inflorescences and berries are most susceptible when young, and can become completely coated with whitish mildew. The growth of the berry epidermal tissue stops when severely infected, which may result in splitting as young fruit expand. Berries in a transitional stage between susceptible and resistant (generally between 3 and 4 weeks after anthesis) develop diffuse, nonsporulating mildew colonies only visible under magnification. Diffuse colonies die as berries continue to mature, leaving behind a network of necrotic epidermal cells (Gadoury et al., 2007). Survival over winter as mycelium in buds results in a distinctive foliar symptom. Shoots arising from these buds may be heavily coated with fungal growth, stark white in colour and stand out like white flags in the vine, resulting in the term 'flag shoots'. More commonly, colonization of a flag shoot is less extensive, and infection of a single leaf, or of leaves on one side of the shoot only, is observed (Gadoury et al., 2011).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638670 | PMC |
http://dx.doi.org/10.1111/j.1364-3703.2011.00728.x | DOI Listing |
Food Res Int
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard.
View Article and Find Full Text PDFNew Phytol
January 2025
Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
Powdery mildew is an economically important disease caused by c. 1000 different fungal species. Erysiphe vaccinii is an emerging powdery mildew species that is impacting the blueberry industry.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Wheat production is threatened by multiple fungal pathogens, such as the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.
Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.
View Article and Find Full Text PDFInsects
November 2024
School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
Powdery mildew has become a significant disease affecting the yield and quality of rubber trees in recent years. It typically manifests on the leaf surface at an early stage, rapidly infecting and spreading throughout the leaves. Therefore, early detection and intervention are essential to reduce the resulting losses due to this disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!