Safeners enhance herbicide tolerance in crop plants but not in target weeds, thus improving herbicide selectivity. The safeners isoxadifen-ethyl and mefenpyr-diethyl protect cereal crops from sulfonyl urea herbicides in postemergence application. The two safeners were shown here to induce the cellular xenobiotic detoxification machinery in Arabidopsis thaliana when applied to leaves in a way mimicking field application. Gene expression profiling revealed the induction of 446 genes potentially involved in the detoxification process. Transgenic Arabidopsis plants expressing a reporter gene under control of a safener-responsive maize promoter were used as a model system to study the safener signalling pathway. Reporter gene analysis in the tga2/3/5/6, sid2-2 and npr1 mutants as compared with the wild-type background showed that safener inducibility required TGA transcription factors and salicylic acid (SA) in a NON-EXPRESSOR of PR-1 (NPR1)-independent pathway converging on two as-1 promoter elements. For the majority of the safener-responsive Arabidopsis genes, a similar dependence on TGA transcription factors and/or SA was shown by gene expression profiling in wild-type plants as compared with the tga2/3/5/6 and sid2-2 mutants. Thirty-eight percent of the genes, however, were induced by safeners in a TGA/SA-independent manner. These genes are likely to be controlled by WRKY transcription factors and cognate W-boxes in their promoters.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2011.02392.xDOI Listing

Publication Analysis

Top Keywords

transcription factors
12
cellular xenobiotic
8
xenobiotic detoxification
8
detoxification machinery
8
machinery arabidopsis
8
gene expression
8
expression profiling
8
reporter gene
8
tga2/3/5/6 sid2-2
8
tga transcription
8

Similar Publications

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

IL-35 modulates Tfh2 and Tfr cell balance to alleviate allergic rhinitis.

Inflamm Res

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.

Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!