Aims: Nanomagnets with metal cores have recently been shown to be promising candidates for magnetic drug delivery due to higher magnetic moments compared with commonly used metal oxides. Successful application strongly relies on a safe implementation that goes along with detailed knowledge of interactions and effects that nanomagnets might impart once entering the body.

Materials & Methods: In this work, we put a particular focus on the interactions of ultra-strong metal nanomagnets (≥ three-times higher in magnetization compared with oxide nanoparticles) within the vascular compartment. Individual aspects of possible effects are addressed, including interactions with the coagulation cascade, the complement system, phagocytes and toxic or inflammatory reactions both by blood and endothelial cells in response to nanomagnet exposure.

Results: We show that carbon-coated metal nanomagnets are well-tolerated by cells of the vascular compartment and have only minor effects on blood coagulation.

Conclusion: These findings provide the fundament to initiate successful first in vivo evaluations opening metal nanomagnets with improved magnetic properties to fascinating applications in nanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.11.33DOI Listing

Publication Analysis

Top Keywords

vascular compartment
12
metal nanomagnets
12
magnetic drug
8
nanomagnets
5
metal
5
iron core/shell
4
core/shell nanoparticles
4
magnetic
4
nanoparticles magnetic
4
drug carriers
4

Similar Publications

Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.

View Article and Find Full Text PDF

Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging.

Vascul Pharmacol

January 2025

Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy. Electronic address:

The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

The lower limb is vascularized by the femoral artery, which continues as the popliteal artery. After the distal margin of the popliteus muscle, the popliteal artery divides into the anterior and posterior tibial arteries. Anatomical variations in the bifurcation of the popliteal artery are frequent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!