A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improvement of mitochondrial function in muscle of genetically obese rats after chronic supplementation with proanthocyanidins. | LitMetric

The aim of this study was to determine the effect of chronic dietary supplementation of a grape seed proanthocyanidin extract (GSPE) at a dose of 35 mg/kg body weight on energy metabolism and mitochondrial function in the skeletal muscle of Zucker obese rats. Three groups of 10 animals each were used: lean Fa/fa lean group (LG) rats, a control fa/fa obese group (OG) of rats, and an obese supplemented fa/fa proanthocyanidins obese group (POG) of rats, which were supplemented with a dose of 35 mg GSPE/kg of body weight/day during the 68 days of experimentation. Skeletal muscle energy metabolism was evaluated by determining enzyme activities, key metabolic gene expression, and immunoblotting of oxidative phosphorylation complexes. Mitochondrial function was analyzed by high-resolution respirometry using both a glycosidic and a lipid substrate. In muscle, chronic GSPE administration decreased citrate synthase activity, the amount of oxidative phosphorylation complexes I and II, and Nrf1 gene expression, without any effects on the mitochondrial oxidative capacity. This situation was associated with lower reactive oxygen species (ROS) generation. Additionally, GSPE administration enhanced the ability to oxidize pyruvate, and it also increased the activity of enzymes involved in oxidative phosphorylation including cytochrome c oxidase. There is strong evidence to suggest that GSPE administration stimulates mitochondrial function in skeletal muscle specifically by increasing the capacity to oxidize pyruvate and contributes to reduced muscle ROS generation in obese Zucker rats.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf201775vDOI Listing

Publication Analysis

Top Keywords

mitochondrial function
16
skeletal muscle
12
oxidative phosphorylation
12
gspe administration
12
obese rats
8
energy metabolism
8
function skeletal
8
group rats
8
obese group
8
gene expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!