The cardiac sodium channel is post-translationally modified by arginine methylation.

J Proteome Res

Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona, Hospital Dr. Josep Trueta, Girona, Spain.

Published: August 2011

The α subunit of the cardiac sodium channel (Na(v)1.5) is an essential protein in the initial depolarization phase of the cardiomyocyte action potential. Post-translational modifications such as phosphorylation are known to regulate Na(v)1.5 function. Here, we used a proteomic approach for the study of the post-translational modifications of Na(v)1.5 using tsA201 cells as a model system. We generated a stable cell line expressing Na(v)1.5, purified the sodium channel, and analyzed Na(v)1.5 by MALDI-TOF and LC-MS/MS. We report the identification of arginine methylation as a novel post-translational modification of Na(v)1.5. R513, R526, and R680, located in the linker between domains I and II in Na(v)1.5, were found in mono- or dimethylated states. The functional relevance of arginine methylation in Na(v)1.5 is underscored by the fact that R526H and R680H are known Na(v)1.5 mutations causing Brugada and long QT type 3 syndromes, respectively. Our work describes for the first time arginine methylation in the voltage-gated ion channel superfamily.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr200339nDOI Listing

Publication Analysis

Top Keywords

arginine methylation
16
sodium channel
12
nav15
9
cardiac sodium
8
post-translational modifications
8
channel
4
channel post-translationally
4
post-translationally modified
4
arginine
4
modified arginine
4

Similar Publications

Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.

Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.

View Article and Find Full Text PDF

Evaluation of the Effects of Mulberry Leaf Extracts L. on Cardiovascular, Renal, and Platelet Function in Experimental Arterial Hypertension.

Nutrients

December 2024

Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain.

Introduction: Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of L.

View Article and Find Full Text PDF

Background: Adenoid cystic carcinoma (ACC) is a rare glandular malignancy, commonly originating in salivary glands of the head and neck. Given its protracted growth, ACC is usually diagnosed in advanced stage. Treatment of ACC is limited to surgery and/or adjuvant radiotherapy, which often fails to prevent disease recurrence, and no FDA-approved targeted therapies are currently available.

View Article and Find Full Text PDF

Substrate adaptors are flexible tethering modules that enhance substrate methylation by the arginine methyltransferase PRMT5.

J Biol Chem

January 2025

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. Electronic address:

Protein arginine methyltransferase (PRMT) 5 is an essential arginine methyltransferase responsible for the majority of cellular symmetric dimethyl-arginine (SDMA) marks. PRMT5 uses substrate adaptors such as pICln, RIOK1, and COPR5, to recruit and methylate a wide range of substrates. Although the substrate adaptors play important roles in substrate recognition, how they direct PRMT5 activity towards specific substrates remains incompletely understood.

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!