Effects of progesterone and testosterone on ICH-induced brain injury in rats.

Acta Neurochir Suppl

Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109-2200, USA.

Published: September 2011

Studies have shown that progesterone reduces brain injury, whereas testosterone increases lesion size after ischemic stroke. This study examined the effects of progesterone and testosterone on intracerebral hemorrhage (ICH)-induced brain injury. Male Sprague-Dawley rats received an injection of 100 μL autologous whole blood into the right basal ganglia. Progesterone (16 mg/kg), testosterone (15 mg/kg) or vehicle was given intraperitoneally 2 h after ICH. Behavioral tests were performed, and the rats were killed after 24 h for brain edema measurement. Perihematomal brain edema was reduced in progesterone-treated rats compared to vehicle-treated rats (p<0.05). Progesterone also improved functional outcome following ICH (p<0.05). Testosterone treatment did not affect perihematomal edema formation, but resulted in lower forelimb placing score (p<0.05). In conclusion, progesterone can reduce brain edema and improve functional outcome, whereas testosterone may have a deleterious effect after ICH in male rats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-7091-0693-8_48DOI Listing

Publication Analysis

Top Keywords

brain injury
12
effects progesterone
8
progesterone testosterone
8
ich-induced brain
8
brain edema
8
brain
5
rats
5
testosterone
4
testosterone ich-induced
4
injury rats
4

Similar Publications

Navigating the Nuances Around Extubation Decisions and Observational Evidence.

Am J Respir Crit Care Med

January 2025

University of Michigan, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Michigan, United States.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.

View Article and Find Full Text PDF

Manganese (Mn) is a neurotoxin that has been etiologically linked to the development of neurodegenerative diseases in the case of overexposure. It is widely accepted that overexposure to Mn leads to manganism, which has clinical symptoms similar to Parkinson's disease (PD), and is referred to as parkinsonism. Astrocytes have been reported to scavenge and degrade extracellular α-synuclein (α-Syn) in the brain.

View Article and Find Full Text PDF

Neuroinflammation immediately follows the onset of ischemic stroke in the middle cerebral artery. During this process, microglial cells are activated in and recruited to the penumbra. Microglial cells can be activated into two different phenotypes: M1, which can worsen brain injury; or M2, which can aid in long-term recovery.

View Article and Find Full Text PDF

Early brain injury (EBI) after subarachnoid hemorrhage (SAH) is a clear correlation with poor prognosis. In the past 20 years, the research on EBI has increased rapidly. However, there is a lack of bibliometric analysis related to EBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!