The divergence of lineages leading to extant squamate reptiles (lizards, snakes, and amphisbaenians) and birds occurred about 275 million years ago. Birds, unlike squamates, have karyotypes that are typified by the presence of a number of very small chromosomes. Hence, a number of chromosome rearrangements might be expected between bird and squamate genomes. We used chromosome-specific DNA from flow-sorted chicken (Gallus gallus) Z sex chromosomes as a probe in cross-species hybridization to metaphase spreads of 28 species from 17 families representing most main squamate lineages and single species of crocodiles and turtles. In all but one case, the Z chromosome was conserved intact despite very ancient divergence of sauropsid lineages. Furthermore, the probe painted an autosomal region in seven species from our sample with characterized sex chromosomes, and this provides evidence against an ancestral avian-like system of sex determination in Squamata. The avian Z chromosome synteny is, therefore, conserved albeit it is not a sex chromosome in these squamate species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00412-011-0322-0 | DOI Listing |
Sci Data
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
The large-scale loach (Paramisgurnus dabryanus; Cypriniformes: Cobitidae) is primarily distributed in East Asia. It is an important economic fish species characterized by fast growth, temperature-dependent sex determination and the ability to breathe air. Currently, molecular mechanism studies related to some aspects such as sex determination, toxicology, feed nutrition, growth and genetic evolution have been conducted.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurology, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, 4099-001 Porto, Portugal.
Chromosomal aberrations are rare but known causes of movement disorders, presenting with broad phenotypes in which dystonia may be predominant. During the investigation of such cases, chromosomal studies are not often considered as a first approach. In this article, the authors describe a family affected by a generalized form of dystonia, evolving from a focal phenotype, for which a new X chromosome large duplication was found to be the likely causative, therefore highlighting the role of such studies when facing complex movement disorders.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA.
Sex chromosomes are a fundamental aspect of sex-biased biology, but the extent to which homologous X-Y gene pairs ('the gametologs') contribute to sex-biased phenotypes remains hotly debated. Although these genes tend to exhibit large sex differences in expression throughout the body (XX females can express both X members, and XY males can express one X and one Y member), there is conflicting evidence regarding the degree of functional divergence between the X and Y members. Here we develop and apply co-expression fingerprint analysis to characterize functional divergence between the X and Y members of 17 gametolog gene pairs across >40 human tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!