We present a microfluidic 'megapixel' digital PCR device that uses surface tension-based sample partitioning and dehydration control to enable high-fidelity single DNA molecule amplification in 1,000,000 reactors of picoliter volume with densities up to 440,000 reactors cm(-2). This device achieves a dynamic range of 10(7), single-nucleotide-variant detection below one copy per 100,000 wild-type sequences and the discrimination of a 1% difference in chromosome copy number.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmeth.1640DOI Listing

Publication Analysis

Top Keywords

digital pcr
8
megapixel digital
4
pcr microfluidic
4
microfluidic 'megapixel'
4
'megapixel' digital
4
pcr device
4
device surface
4
surface tension-based
4
tension-based sample
4
sample partitioning
4

Similar Publications

Photoexcited Electro-Driven Reactive Oxygen Species Channeling for Precise Extraction of Biomarker Information from Tumor Interstitial Fluid.

Small

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.

Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates.

View Article and Find Full Text PDF

[Characteristics of RET gene rearrangement detected by fluorescence in situ hybridization in lung cancer].

Zhonghua Bing Li Xue Za Zhi

January 2025

Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College,Chinese Academy of Medical Sciences, Beijing100730, China.

To investigate the characteristics of RET gene rearrangement revealed by fluorescence in situ hybridization (FISH) in lung cancer. A total of 616 formalin-fixed paraffin-embedded surgical samples from lung adenocarcinomas with wild-type EGFR gene and no ALK protein expression by immunohistochemistry obtained at Peking Union Medical College Hospital, Beijing, China between December 2019 and April 2022 were included. Thirty-three tumors with RET gene rearrangement determined by imbalanced-based reverse-transcription droplet digital PCR (RT-ddPCR) were analyzed using break-apart FISH.

View Article and Find Full Text PDF

Telomerase is reactivated by genomic TERT rearrangements in ~30% of diagnosed high-risk neuroblastomas. Dismal patient prognosis results if the RAS/MAPK/ALK signaling transduction network also harbors mutations. We present a liquid biopsy-based monitoring strategy for this particularly vulnerable pediatric patient subgroup, for whom real-time molecular diagnostic tools are limited to date.

View Article and Find Full Text PDF

The caribou ( sspp.) is a keystone wildlife species in northern ecosystems that plays a central role in the culture, spirituality and food security of Indigenous People. The Arctic is currently experiencing an unprecedented rate of climate change, including warming temperatures and altered patterns of precipitation.

View Article and Find Full Text PDF

Background: Droplet digital PCR (ddPCR) is a highly sensitive tool for detecting bacterial DNA in bacterial bloodstream infections (BSI). This study aimed to examine the sensitivity and specificity of ddPCR and the association between bacterial DNA load in whole blood and the time-to-positivity (TTP) of blood culture (BC) in patients with Escherichia coli BSI.

Methods: This prospective study enrolled patients with E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!