Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus.

Appl Environ Microbiol

SINTEF Materials and Chemistry, Department of Biotechnology, SINTEF, 7465 Trondheim, Norway.

Published: September 2011

We investigated the regulation and roles of six aspartate pathway genes in L-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by L-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the L-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has-in addition to a hom-1 mutation-chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for L-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased L-lysine production levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165430PMC
http://dx.doi.org/10.1128/AEM.05093-11DOI Listing

Publication Analysis

Top Keywords

aspartate pathway
16
pathway genes
12
genes l-lysine
12
l-lysine overproduction
12
bacillus methanolicus
8
wild-type strain
8
transcription repressed
8
repressed 5-fold
8
yclm transcription
8
genes
7

Similar Publications

Metabolic Engineering of for Efficient Production of Ectoine.

J Agric Food Chem

December 2024

The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in .

View Article and Find Full Text PDF

This study aimed to investigate the effects of short-term exposure of Bisphenol A (BPA) on the growth and lactation performance, blood parameters, and milk composition of lactating rabbits and explore its potential molecular mechanisms. Eight lactating rabbits with similar body weight were selected and randomly divided into the experimental group (BPA) and the control group (Ctrl). The group BPA was orally administered 80 mg/kg/day BPA on the 15th day postpartum, while the group Ctrl received a corresponding volume of vehicle.

View Article and Find Full Text PDF

Diabetic liver injury (DLI) refers to liver injury resulting from prolonged chronic hyperglycemia and represents a significant complication associated with diabetes, The specific pathogenic mechanism of DLI remains incompletely understood. Tumor necrosis factor α (TNF-α) has been demonstrated to play a crucial role in diabetic complications through intricate signalling pathways, including pyroptosis. However, it remains uncertain whether TNF-α mediates pyroptosis in DLI, we initially established an in vitro model of DLI and confirmed the presence of an inflammatory state characterized by TNF-α in DLI.

View Article and Find Full Text PDF

Morphine belongs to the class of opioids and is known for its potential to cause dependence and addiction, particularly with prolonged use. Due to the associated risks, caution must be taken when prescribing and limiting its clinical use. Overexpression of N-methyl-D-aspartate (NMDA) receptors, nitric oxide and cGMP pathway has been implicated in exacerbate the development of morphine dependence and withdrawal.

View Article and Find Full Text PDF

Aim: This research aimed to probe the effects of fecal microbiota and on the metabolism of Radix Astragali (RA) and solid fermenting Radix Astragali (FRA). It further explores pharmacological effects of RA, , and FRA on HUA mouse model and the mechanisms in HUA treatment.

Methods: Fecal microbiota and were used to ferment FRA and RA in vitro to probe the impacts of microbiota on the metabolism of active compound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!