Tumor cells have an altered metabolic phenotype characterized by increased glycolysis and diminished oxidative phosphorylation. Despite the suspected importance of glycolysis in tumorigenesis, the temporal relationship between oncogene signaling, in vivo tumor formation, and glycolytic pathway activity is poorly understood. Moreover, how glycolytic pathways are altered as tumors regress remains unknown. Here, we use a switchable model of Myc-driven liver cancer, along with hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) to visualize glycolysis in de novo tumor formation and regression. LDHA abundance and activity in tumors is tightly correlated to in vivo pyruvate conversion to lactate and is rapidly inhibited as tumors begin to regress, as are numerous glycolysis pathway genes. Conversion of pyruvate to alanine predominates in precancerous tissues prior to observable morphologic or histological changes. These results demonstrate that metabolic changes precede tumor formation and regression and are directly linked to the activity of a single oncogene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858338PMC
http://dx.doi.org/10.1016/j.cmet.2011.04.012DOI Listing

Publication Analysis

Top Keywords

tumor formation
16
formation regression
12
tumors regress
8
glycolysis
5
tumor
5
13c-pyruvate imaging
4
imaging reveals
4
reveals alterations
4
alterations glycolysis
4
glycolysis precede
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!