Quantitative ultrasound (QUS) has been used to characterize soft tissues at ordinary abdominal ultrasound frequencies (2 to 15 MHz) and is beginning application at high frequencies (20 to 70 MHz). For example, backscatter and attenuation coefficients can be estimated in vivo using a reference phantom. At high frequencies, it is crucial that reverberations do not compromise the measurements. Such reverberations can occur between the phantom's scanning window and transducer components as well as within the scanning window between its surfaces. Transducers are designed to minimize reverberations between the transducer and soft tissue. Thus, the acoustic impedance of a phantom scanning window should be tissuelike; polymethylpentene (TPX) is commonly used because of its tissuelike acoustic impedance. For QUS, it is also crucial to correct for the transmission coefficient of the scanning window. Computation of the latter requires knowledge of the ultrasonic properties, viz, density, speed and attenuation coefficients. This work reports values for the ultrasonic properties of two versions of TPX over the high-frequency range. One form (TPX film) is used as a scanning window on high-frequency phantoms, and at 40 MHz and 22°C was found to have an attenuation coefficient of 120 dB/cm and a propagation speed of 2093 m/s.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136917 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.05.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!