Isolated rabbit hearts were exposed to ischemia (I; 15 min) and reperfusion (R; 5-30 min) in a model of stunned myocardium. I/R decreased left-ventricle O(2) consumption (46%) and malate-glutamate-supported mitochondrial state 3 respiration (32%). Activity of complex I was 28% lower after I/R. The pattern observed for the decline in complex I activity was also observed for the reduction in mitochondrial nitric oxide synthase (mtNOS) biochemical (28%) and functional (50%) activities, in accordance with the reported physical and functional interactions between complex I and mtNOS. Malate-glutamate-supported state 4 H(2)O(2) production was increased by 78% after I/R. Rabbit heart Mn-SOD concentration in the mitochondrial matrix (7.4±0.7 μM) was not modified by I/R. Mitochondrial phospholipid oxidation products were increased by 42%, whereas protein oxidation was only slightly increased. I/R produced a marked (70%) enhancement in tyrosine nitration of the mitochondrial proteins. Adenosine attenuated postischemic ventricular dysfunction and protected the heart from the declines in O(2) consumption and in complex I and mtNOS activities and from the enhancement of mitochondrial phospholipid oxidation. Rabbit myocardial stunning is associated with a condition of dysfunctional mitochondria named "complex I syndrome." The beneficial effect of adenosine could be attributed to a better regulation of intracellular cardiomyocyte Ca(2+) concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!