AI Article Synopsis

  • Despite the availability of vaccines, seasonal influenza still causes 200,000-500,000 annual deaths worldwide, and there are emerging pandemic threats from various viruses.
  • A new virus-like particle (VLP) vaccine platform has been developed that incorporates three different hemagglutinin (HA) subtypes to target both pandemic (H5N1, H7N2, H2N3) and seasonal (H1N1, H3N2, type B) influenza viruses.
  • The research shows that this triple-HA VLP approach effectively provided immunity in ferrets against all tested influenza strains, suggesting a promising strategy for quickly creating vaccines against multiple influenza types.

Article Abstract

Despite existing vaccines and specific therapies, epidemics of seasonal influenza annually claim 200,000-500,000 lives worldwide. Pandemic influenza represents an even greater threat, with numerous potentially pandemic viruses circulating in nature. Development of multi-specific vaccines against multiple pandemic or seasonal strains is important for human health and the global economy. Here we report a novel virus-like particle (VLP) platform that contains three hemagglutinin (HA) subtypes. This recombinant vaccine design resulted in the expression of three HA subtypes co-localized within a VLP. Experimental triple-HA VLPs containing HA proteins derived from H5N1, H7N2, and H2N3 viruses were immunogenic and protected ferrets from challenge from all three potentially pandemic viruses. Similarly, VLPs containing HA subtypes derived from seasonal H1N1, H3N2, and type B influenza viruses protected ferrets from three seasonal influenza viruses. We conclude that this technology may represent a novel strategy for rapid development of trivalent seasonal and pandemic vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2011.06.068DOI Listing

Publication Analysis

Top Keywords

virus-like particle
8
seasonal influenza
8
pandemic viruses
8
protected ferrets
8
influenza viruses
8
influenza
6
subtypes
5
seasonal
5
pandemic
5
viruses
5

Similar Publications

Malaria is a highly lethal infectious disease caused by parasites. These parasites are transmitted to vertebrate hosts when mosquitoes of the genus probe for a blood meal. Sporozoites, the infectious stage of , transit to the liver within hours of injection into the dermis.

View Article and Find Full Text PDF

Charge detection mass spectrometry (CD-MS) is an emerging single-particle technique where both the / and charge are measured individually to determine each ion's mass. It is particularly well-suited for analyzing high mass and heterogeneous samples. With conventional MS, the loss of charge state resolution with high mass samples has hindered the direct coupling of MS to separation techniques like size exclusion chromatography (SEC) and forced the use of lower resolution detectors.

View Article and Find Full Text PDF

Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in , the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death.

View Article and Find Full Text PDF

Decades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event.

View Article and Find Full Text PDF

The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!