Although both natural and induced regulatory T (nTreg and iTreg) cells can enforce tolerance, the mechanisms underlying their synergistic actions have not been established. We examined the functions of nTreg and iTreg cells by adoptive transfer immunotherapy of newborn Foxp3-deficient mice. As monotherapy, only nTreg cells prevented disease lethality, but did not suppress chronic inflammation and autoimmunity. Provision of Foxp3-sufficient conventional T cells with nTreg cells reconstituted the iTreg pool and established tolerance. In turn, acute depletion of iTreg cells in rescued mice resulted in weight loss and inflammation. Whereas the transcriptional signatures of nTreg and in vivo-derived iTreg cells were closely matched, there was minimal overlap in their T cell receptor (TCR) repertoires. Thus, iTreg cells are an essential nonredundant regulatory subset that supplements nTreg cells, in part by expanding TCR diversity within regulatory responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295638 | PMC |
http://dx.doi.org/10.1016/j.immuni.2011.03.029 | DOI Listing |
Sci Rep
January 2025
Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Necroptosis, a type of programmed cell death, has been increasingly linked to cardiovascular disease development, yet its role in dilated cardiomyopathy (DCM) remains unclear. In this study, we analyzed the GSE5406 dataset from the GEO database to explore necroptosis-related prognostic signatures in DCM using LASSO regression. We identified five necroptosis-related genes (BID, CAMK2B, GLUL, HSP90AB1, CHMP5) that define a necroptosis-related signature with strong predictive value, evidenced by ROC curve areas of 0.
View Article and Find Full Text PDFEur J Immunol
December 2024
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
Potassium ions (K) released from dying necrotic tumour cells accumulate in the tumour microenvironment (TME) and increase the local K concentration to 50 mM (high-[K]). Here, we demonstrate that high-[K] decreases expression of the T-cell receptor subunits CD3ε and CD3ζ and co-stimulatory receptor CD28 and thereby dysregulates intracellular signal transduction cascades. High-[K] also alters the metabolic profiles of T-cells, limiting the metabolism of glucose and glutamine, consistent with functional exhaustion.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
December 2024
Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
We investigated the mechanism whereby double-negative T cells (DNTs) regulate Treg/Th17 balance to promote the progression of liver fibrosis. Liver fibrosis was induced with carbon tetrachloride (CCl4) in mice. Mouse DNTs were isolated, amplified and injected.
View Article and Find Full Text PDFBMC Cancer
November 2024
Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China.
At present, the characteristics of double-hit multiple myeloma (DHMM) are unknown. We retrospectively analyzed the clinical data from 433 new diagnosed MM patients and found that DHMM have a higher β2-MG level and percentage of bone marrow plasma cell. Cox regression analysis showed that the prognosis of DHMM was not limited by clinical indicators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!