Although the nutritional composition and health status after consumption of the meat and milk derived from both conventionally bred (normal) and somatic cell nuclear transferred (cloned) animals and their progeny are not different, little is known about their food safeties like genetic toxicity. This study is performed to examine both in vitro (bacterial mutation and chromosome aberration) and in vivo (micronucleus) genotoxicity studies of cloned cattle meat. The concentrations of both normal and cloned cattle meat extracts (0-10×) were tested to five strains of bacteria (Salmonella typhimurium: TA98, TA100, TA1535, and TA1537; Escherichia coli: WP2uvrA) for bacterial mutation and to Chinese hamster lung (CHL/IU) cells for chromosome aberration, respectively. For micronucleus test, ICR mice were divided into five dietary groups: commercial pellets (control), pellets containing 5% (N-5) and 10% (N-10) normal cattle meat, and pellets containing 5% (C-5) and 10% (C-10) cloned cattle meat. No test substance-related genotoxicity was noted in the five bacterial strains, CHL/IU cells, or mouse bone marrow cells, suggesting that the cloned cattle meat potentially may be safe in terms of mutagenic hazards. Thus, it can be postulated that the cloned cattle meat do not induce any harmful genotoxic effects in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2011.06.026 | DOI Listing |
Parasit Vectors
December 2024
United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Centre, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705-2350, USA.
Background: Parasites in the apicomplexan genus Sarcocystis infect cattle worldwide. Assessing the economic importance of each such parasite species requires proper diagnosis. Sarcocystis cruzi, a thin-walled species, infects virtually all cattle.
View Article and Find Full Text PDFVet Sci
November 2024
Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru.
This study evaluated the gut microbiota and meat quality traits in 11 healthy female cattle from the Huaral region of Peru, including 5 Angus, 3 Braunvieh, and 3 F1 Simmental × Braunvieh. All cattle were 18 months old and maintained on a consistent lifelong diet. Meat quality traits, including loin area, fat thickness, muscle depth, and marbling, were assessed in vivo using ultrasonography.
View Article and Find Full Text PDFEpigenomes
December 2024
School of Veterinary and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu 18618-681, SP, Brazil.
Early weaning management followed by energy supplementation can lead to metabolic alterations in the calf that exert long-term effects on the animal's health and performance. It is believed that the main molecular basis underlying these metabolic adaptations are epigenetic mechanisms that regulate, activate, or silence genes at different stages of development and/or in response to different environmental stimuli. However, little is known about postnatal metabolic programming in .
View Article and Find Full Text PDFEpidemiologia (Basel)
December 2024
Centro de Investigación Turipaná, Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, km 13 vía Montería, Cereté 230550, Colombia.
Introduction: Bovine neosporosis represents a significant threat to reproduction and production in livestock systems worldwide. This disease is caused by the protozoan , resulting in abortions of cows and neurological signs in newborn calves. This leads to significant economic losses, decreasing meat and milk production, especially in tropical regions.
View Article and Find Full Text PDFJ Anim Breed Genet
December 2024
Departament of Animal Science, Federal University of Viçosa, Viçosa, Brazil.
The need for producing in environmentally resilient system drives new research to achieve sustainable beef production. Water footprint of the beef supply chain is a concern that must be addressed, aiming to improve water use within the production chain. One approach is genetic selection of beef cattle for water efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!