Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2310/8000.2011.110296 | DOI Listing |
Acta Biomater
January 2025
Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China. Electronic address:
The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis.
View Article and Find Full Text PDFActa Biomater
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
Purpose: To develop a method for enriching keratinocyte progenitor cells (KPCs) and establish a limbal niche (LN)-mediated transdifferentiation protocol of KPCs into corneal epithelial cells.
Methods: Limbal niche cells (LNCs) were isolated from limbal tissues through enzymatic digestion and characterized. Conditioned medium from LNCs cultures was collected.
BMC Ophthalmol
January 2025
Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye.
Background: Aniridia is a rare panocular disease caused by gene mutation in the PAX6, which is essential for eye development. Aniridia is inherited in an autosomal dominant manner, but its phenotype can vary significantly among individuals with the same mutation. Animal models, such as drosophila, zebrafish, and rodents, have been used to study aniridia through Pax6 deletions.
View Article and Find Full Text PDFCornea
January 2025
Department of Pulmonology, Trakya University Faculty of Medicine, Edirne, Turkey; and.
Purpose: To investigate the effect of nocturnal chronic hypoxia on the thickness changes of the corneal limbal epithelial area that provides regeneration of the corneal epithelium and ocular surface evaluation parameters in patients with obstructive sleep apnea (OSA).
Methods: All patients diagnosed with OSA and the control group underwent a complete ophthalmological examination, including slit-lamp examination and funduscopy. Tear break-up time, Schirmer test-I, Ocular Surface Disease Index Questionnaire, and anterior segment optical coherence tomography were performed with fluorescein sterile strip for ocular surface evaluation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!