A novel 3ω thermal conductivity measurement technique called metal-coated 3ω is introduced for use with liquids, gases, powders, and aerogels. This technique employs a micron-scale metal-coated glass fiber as a heater/thermometer that is suspended within the sample. Metal-coated 3ω exceeds alternate 3ω based fluid sensing techniques in a number of key metrics enabling rapid measurements of small samples of materials with very low thermal effusivity (gases), using smaller temperature oscillations with lower parasitic conduction losses. Its advantages relative to existing fluid measurement techniques, including transient hot-wire, steady-state methods, and solid-wire 3ω are discussed. A generalized n-layer concentric cylindrical periodic heating solution that accounts for thermal boundary resistance is presented. Improved sensitivity to boundary conductance is recognized through this model. Metal-coated 3ω was successfully validated through a benchmark study of gases and liquids spanning two-orders of magnitude in thermal conductivity.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3593372DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
12
metal-coated 3ω
12
gases powders
8
6
thermal
5
metal-coated
5
improved 3-omega
4
3-omega measurement
4
measurement thermal
4
conductivity liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!