The conformation of single molecules of dialkyl poly para phenylene ethynylenes (PPEs), electro-active polymers, is studied in solutions using molecular dynamics simulations. The conformation of conjugated polymers affects their electro-optical properties and therefore is critical to their current and potential uses, though only limited theoretical knowledge is available regarding the factors that control their configuration. The present study investigates the affects of molecular parameters including molecular weight of the polymer and chemical structure of the side chains of PPEs in different solvents on the conformation of the polymers. The PPEs are modeled atomistically where the solvents are modeled both implicitly and explicitly. The study finds that PPEs assume extended configuration which is affected by the length of the polymer backbone and the nature and length of substituting side chains. While the polymer remains extended, local dynamics is retained and no long range correlations are observed within the backbone. The results are compared with scattering experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3604820 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!