Diffusion-weighted magnetic resonance (MR) imaging is increasingly used in the detection and characterization of pancreatic lesions. Diffusion-weighted imaging may provide additional information to radiologists evaluating patients who have cystic or solid neoplasms of the pancreas. Because of greater freedom of motion of water molecules in fluid-rich environments, simple cysts in the pancreas have higher signal intensity on diffusion-weighted images with a b value of 0 sec/mm2 and lower signal intensity on high-b-value images. High apparent diffusion coefficient (ADC) values can be obtained on ADC maps because of the T2 “shine-through” effect. In contrast, solid neoplasms of the pancreas show increased signal intensity relative to the pancreas on diffusion-weighted images with a b value of 0 sec/mm2 and relatively high signal intensity on high-b-value images. Diffusion-weighted imaging can help detect solid pancreatic neoplasms with extremely dense cellularity or extracellular fibrosis by demonstrating significantly low ADC values, and these neoplasms may be better detected on diffusion-weighted MR images because of better contrast, although the resolution is generally worse. However, diffusion-weighted imaging may not be capable of helping definitively characterize solid lesions as inflammatory or neoplastic because of an overlap in ADC values between the two types. For example, it is difficult to distinguish poorly differentiated pancreatic adenocarcinoma from mass-forming pancreatitis at diffusion-weighted imaging because of similarly low ADC values attributed to dense fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.313105174DOI Listing

Publication Analysis

Top Keywords

diffusion-weighted imaging
20
signal intensity
16
adc values
16
diffusion-weighted images
12
diffusion-weighted
9
pancreas diffusion-weighted
8
solid neoplasms
8
neoplasms pancreas
8
images sec/mm2
8
intensity high-b-value
8

Similar Publications

Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).

Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.

View Article and Find Full Text PDF

Background: Diffusion-weighted (DW) turbo-spin-echo (TSE) imaging offers improved geometric fidelity compared to single-shot echo-planar-imaging (EPI). However, it suffers from low signal-to-noise ratio (SNR) and prolonged acquisition times, thereby restricting its applications in diagnosis and MRI-guided radiotherapy (MRgRT).

Purpose: To develop a joint k-b space reconstruction algorithm for concurrent reconstruction of DW-TSE images and the apparent diffusion coefficient (ADC) map with enhanced image quality and more accurate quantitative measurements.

View Article and Find Full Text PDF

Objective: To evaluate the relationship between infarct pattern, inferred stroke mechanism and risk of recurrence in patients with ischaemic stroke. The question is clinically relevant to optimise secondary stroke prevention investigations and treatment.

Design: We conducted a retrospective analysis of the dabigatran treatment of acute stroke II (DATAS II) trial (ClinicalTrials.

View Article and Find Full Text PDF

Objective: We aimed to elucidate the histopathological pre-diagnosis of cranial gliomas with magnetic resonance imaging (MRI) techniques in gliomas.

Method: A total of 82 glioma patients were enrolled to our study. Pre-operative conventional MRI images (non-contrast T1/T2/flair/contrast-enhanced T1) and advanced MRI images (DAG and ADC mapping, MRI spectroscopy and perfusion MRI [PMRI]) were analyzed.

View Article and Find Full Text PDF

Remodeling and Characterization Analysis of Corticospinal Tract in Patients with Intracerebral Hemorrhage in the Basal Ganglia.

Transl Stroke Res

January 2025

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.

To investigate corticospinal tract (CST) injury and remodeling in patients with basal ganglia intracerebral hemorrhage (ICH) and explore the characterization capabilities of the corresponding parameters. In this prospective study, baseline, scale, and diffusion-weighted imaging (DWI) data were collected from patient cohorts. Participants were stratified into favorable (0-3 points) and unfavorable (4-6 points) prognosis groups, based on Modified Rankin Scale (mRS) after 3-6 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!