We analyzed the statistical distribution of intra-specific local abundances for a set North American breeding bird species. We constructed frequency plots for every species and found that they showed long-tail power-law behavior, truncated at an upper abundance cut-off value. Based on finite size scaling arguments, we investigated whether frequency curves may be considered scaled copies of each other. Data collapse was possible after taking powers of the total abundance of each species, in order to correct deviations from the underlying universal finite size scaling function (UFSS). The UFSS power law exponent oscillated in time within the regime of unbounded variance, which is consistent with the wild fluctuations that characterize ecological phenomena. We speculate that our results may eventually be linked to other law-like macroecological phenomena, such as energetic constraints reported in allometric scaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4067/S0716-97602011000100013 | DOI Listing |
J Phys Condens Matter
January 2025
School of Physical Sciences, NISER, Jatni, Bhubaneswar, 752050, INDIA.
We study topological charge pumping (TCP) in the Rice-Mele (RM) model with irreciprocal hopping. The non-Hermiticity gives rise to interesting pumping physics, owing to the presence of skin effect and exceptional points. In the static one-dimensional (1D) RM model, we find two independent tuning knobs that can drive the topological transition, namely, non-Hermitian parameter $\gamma$ and system size $N$.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Department of Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada.
The integration of self-expandable nitinol frames with cable-driven parallel mechanisms offers a promising advancement in minimally invasive cardiovascular interventions. This study presents the design, fabrication, and verification of a miniaturized self-expandable nitinol frame to enhance catheter tip steerability and navigation within complex vascular anatomies. The frame is reduced in size for delivery through 7-8 Fr sheaths while accommodating diverse vascular diameters, allowing up to a maximum expansion of 15 mm.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
We report the existence of deterministic patterns in statistical plots of single-cell transcriptomic data. We develop a theory showing that the patterns are neither artifacts introduced by the measurement process nor due to underlying biological mechanisms. Rather they naturally emerge from finite sample size effects.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Mines Saint-Etienne, Univ Jean Monnet, Etablissement Francais du Sang, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France. Electronic address:
The rise in minimally invasive procedures has created a demand for efficient and reliable planning software to predict intra- and post-operative outcomes. Surrogate modelling has shown promise, but challenges remain, particularly in cardiovascular applications, due to the complexity of parametrising anatomical structures and the need for large training datasets. This study aims to apply statistical shape modelling and machine learning for predicting stent deployment in real time using patient-specific models.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Group of Applied Electromagnetics (GEA), Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
This work presents the design of a novel fully canonical triple-mode filter with source-load coupling for 5G applications, exploiting its very compact size for the FR1 band. The design is carried out using circular waveguide technology to attain power handling and low insertion losses. The fully canonical topology allows for increasing the selectivity of the filter since the number of finite transmission zeros is equal to the order of the filter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!