An Fe-metal complex with 2'-hydroxy chalcone (2'-HC) ligands [Fe(III) (2'-hydroxy chalcone)(3)] is synthesized by a chemical route and is subjected to different thermal treatments. Upon thermolysis in air at 450 °C for 3 h the complex yields maghemite (γ-Fe(2)O(3)) nanorods with a thin hematite (α-Fe(2)O(3)) shell. X-Ray diffraction (XRD), Mössbauer spectroscopy, diffuse reflectance spectroscopy (UV-DRS), high resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometry (VSM) are used to characterize the samples. The stability of the ligand and the Fe-complex is further examined by using thermogravimmetric/differential thermal analysis (TGA/DTA). We suggest a residual ligand controlled mechanism for the formation of an anisotropic nanostructure in a crumbling molecular solid undergoing ligand decomposition. Since the band gap of iron oxide is in the visible range, we explored the use of our core shell nano-rod sample for photocatalytic activity for H(2) generation by H(2)S splitting under solar light. We observed high photocatalytic activity for hydrogen generation (75 ml h(-1)).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1dt10319a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!