Background: Numerous proangiogenic growth factors have been shown to improve impaired wound healing. This study evaluated the effects of subcutaneous pretreatment with a combination of proangiogenic growth factors on wound closure, mechanical properties, vessel density, and morphology.
Methods: Thirty-six Balb/c mice with streptozotocin-induced diabetes were divided into 3 groups. A mixture of VEGF (35.0 μg), bFGF (2.5 μg), and PDGF (3.5 μg) was administered subcutaneously 3, 5, and 7 days prior to wounding in the first group, whereas the second group received three doses of 3.5 μg PDGF. Wound sizes were assessed daily and the repaired tissues were harvested 7 days after wound closure.
Results: Complete closure (≥95% healing of initial wound area) was reached in all proangiogenic pretreated animals by day 17, whereas the PDGF monotherapy group needed up to 20 days for complete closure. By the time of tissue harvesting on day 24, complete closure was not reached in all control animals. Punch biopsy material revealed 1.6-fold higher vessel densities in the proangiogenic combination-pretreated group than in the controls.
Conclusions: Proangiogenic priming revealed several significant effects on diabetic wound healing: faster time to closure, a higher vessel density, and improved functional outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000328143 | DOI Listing |
Int J Mol Sci
December 2024
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
Hutchinson-Gilford progeria syndrome (HGPS) is a pediatric condition characterized by clinical features that resemble accelerated aging. The abnormal accumulation of a toxic form of the lamin A protein known as progerin disrupts cellular functions, leading to various complications, including growth retardation, loss of subcutaneous fat, abnormal skin, alopecia, osteoporosis, and progressive joint contractures. Death primarily occurs as the result of complications from progressive atherosclerosis, especially from cardiac disease, such as myocardial infarction or heart failure, or cerebrovascular disease like stroke.
View Article and Find Full Text PDFMedComm (2020)
January 2025
Department of Oncology Shanghai Medical College, Fudan University Shanghai China.
Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.
View Article and Find Full Text PDFUltraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.
View Article and Find Full Text PDFJ Physiol
January 2025
Vascular Physiology Laboratory, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.
Ischaemic stroke is a leading cause of death and disability. Circulating extracellular vesicles (EVs) post-stroke may help brain endothelial cells (BECs) counter ischaemic injury. However data on how EVs from ischaemic stroke patients, considering injury severity, affect these cells are limited.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!