Background/aims: Preventing internal hemorrhage extends the lifespan of rats with chronic bile duct ligation (CBDL), a common animal model of portal hypertension. We investigated hemodynamics during the early and late stages of cirrhosis caused by CBDL. We also evaluated the hemodynamic influence of NO, which is the chief vasodilator in hyperdynamic syndrome, by administration of an NO synthase inhibitor (N(G)-nitro-L-arginine methyl ester: L-NAME; 10 mg/kg). ANIMALS/METHODS: In 24 Sprague-Dawley rats (9 sham rats and 15 CBDL rats), hemodynamics were assessed under conscious and unrestrained conditions 4 and 8 weeks after surgery. Before and 30 minutes after L-NAME administration, the cardiac index (CI) and regional blood flow were measured with the reference sample method using (141)Ce- and (113)Sn-microspheres (15 µm in diameter).

Results: A hyperdynamic systemic circulation and splanchnic hyperemia were observed after CBDL, and these changes increased with the progression of cirrhosis. L-NAME significantly diminished the hyperdynamic circulation and also reduced splanchnic hyperemia. In 4-week CBDL rats, a low hemoglobin concentration made an important contribution to the hyperdynamic circulation, and the portal collateral system collapsed when inflow to the portal territory was reduced by L-NAME treatment. In 8-week CBDL rats, systemic hemodynamics were closely linked to both the splanchnic circulation and the renal circulation before and after L-NAME administration, apart from hepatic artery blood flow.

Conclusion: The distinctive hemodynamic changes of portal hypertension were found in 8-week CBDL rats. Thus, 8-week CBDL rats may be a better animal model of human portal hypertension than 4-week CBDL rats.

Download full-text PDF

Source
http://dx.doi.org/10.1272/jnms.78.146DOI Listing

Publication Analysis

Top Keywords

cbdl rats
24
hyperdynamic circulation
12
portal hypertension
12
8-week cbdl
12
rats
10
cbdl
9
early late
8
bile duct
8
duct ligation
8
animal model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!