Cornuside, a secoiridoid glucoside compound, was isolated from the fruit of Cornus officinalis SIEB. et ZUCC. Cornuside has been reported to possess immunomodulatory and anti-inflammatory activities. However, the effects and mechanism of action of cornuside in inflammation have not been fully characterized. The present study was therefore designed to examine whether cornuside suppresses inflammatory response in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Cornuside significantly inhibited the LPS-induced production of nitric oxide, prostaglandin E(2), tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-1beta. The mRNA and protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were also decreased by cornuside. Furthermore, cornuside significantly attenuated the LPS-stimulated phosphorylation and degradation of inhibitory kappa B-alpha and the subsequent translocation of the p65 subunit of nuclear factor-kappa B (NF-κB) to the nucleus. Cornuside also reduced the phosphorylations of extracellular-signal-related kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK1/2). These results suggest that the anti-inflammatory property of cornuside is related to the downregulations of iNOS and COX-2 due to NF-κB inhibition as well as the negative regulation of ERK1/2, p38, and JNK1/2 phosphorylations in RAW 264.7 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.34.959 | DOI Listing |
Gels
December 2024
Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France.
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona 08930, Spain.
The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells.
View Article and Find Full Text PDFMolecules
June 2024
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy.
Epilepsia
February 2024
Encoded Therapeutics, South San Francisco, California, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!