A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intercluster reactions show that (CH3)2S(+)CH2CO2H is a better methyl cation donor than (CH3)3N(+)CH2CO2H. | LitMetric

AI Article Synopsis

  • The study investigates the methylating properties of two zwitterionic agents, dimethylsulfonioacetate (DMSA) and glycine betaine (GB), through gas-phase experiments involving collision-induced dissociation (CID) of their dimers containing arginine.
  • The results indicate that protonated DMSA is a more effective methylating agent compared to protonated GB, as evidenced by consistent yields of methyl cation transfer products.
  • Further analysis shows that methylation occurs in a specific form of arginine when complexed with DMSA, and theoretical calculations support that the methylation process with DMSA is favored over GB both kinetically and thermodynamically.

Article Abstract

The intrinsic methylating abilities of the known biological methylating zwitterionic agents, dimethylsulfonioacetate (DMSA), (CH(3))(2)S⁺CH(2)CO(2)(-) (1) and glycine betaine (GB), (CH(3))(3)N⁺CH(2)CO(2)(-) (2), have been examined via a range of gas phase experiments involving collision-induced dissociation (CID) of their proton-bound homo- and heterodimers, including those containing the amino acid arginine. The relative yields of the products of methyl cation transfer are consistent in all cases and show that protonated DMSA is a more potent methylating agent than protonated GB. Since methylation can occur at more than one site in arginine, the [M+CH(3)](+) ion of arginine, formed from the heterocluster [DMSA+Arg+H](+), was subject to an additional stage of CID. The resultant CID spectrum is virtually identical to that of an authentic sample of protonated arginine-O-methyl ester but is significantly different to that of an authentic sample of protonated N(G)-methyl arginine. This suggests that methylation has occurred within a salt bridge complex of [DMSA+Arg+H](+), in which the arginine exists in the zwitterionic form. Finally, density functional theory calculations on the model salts, (CH(3)CO(2)(-))[(CH(3))(3)S(+)] and (CH(3)CO(2)(-))[(CH(3))(4)N(+)], show that methylation of CH(3)CO(2)(-) by (CH(3))(3)S(+) is both kinetically and thermodynamically preferred over methylation by (CH(3))(4)N(+).

Download full-text PDF

Source
http://dx.doi.org/10.1255/ejms.1115DOI Listing

Publication Analysis

Top Keywords

methyl cation
8
authentic sample
8
sample protonated
8
arginine
5
intercluster reactions
4
reactions ch32s+ch2co2h
4
ch32s+ch2co2h better
4
better methyl
4
cation donor
4
donor ch33n+ch2co2h
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!