Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222989 | PMC |
http://dx.doi.org/10.1289/ehp.119-a289 | DOI Listing |
ACS Mater Au
January 2025
Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, Knoxville, Tennessee 37996, United States.
Halide perovskites (HPs) are emerging as key materials in the fight against global warming with well recognized applications, such as photovoltaics, and emergent opportunities, such as photocatalysis for methane removal and environmental remediation. These current and emergent applications are enabled by a unique combination of high absorption coefficients, tunable band gaps, and long carrier diffusion lengths, making them highly efficient for solar energy conversion. To address the challenge of discovery and optimization of HPs in huge chemical and compositional spaces of possible candidates, this perspective discusses a comprehensive strategy for screening HPs through automated high-throughput and combinatorial synthesis techniques.
View Article and Find Full Text PDFSci Total Environ
January 2025
Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton South, Melbourne, Victoria 3169, Australia; Department of Agricultural Economics, University of the Free State, Bloemfontein 9300, South Africa.
Agricultural systems are important emission sources of non-CO greenhouse gases (GHGs), including the relatively short-lived GHG methane (CH). As a pivotal emitter, China's CH emissions have received wide attention. For the first time, this study applied an indicator of radiative forcing-based climate footprint (RFCF) to compare the climate impacts of China's on-farm non-CO GHG emissions including CH and nitrous oxide (NO).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.
Limiting climate change to targets enshrined in the Paris Agreement will require both deep decarbonization of the energy system and the deployment of carbon dioxide removal at potentially large scale (gigatons of annual removal). Nations are pursuing direct air capture to compensate for inertia in the expansion of low-carbon energy systems, decarbonize hard-to-abate sectors, and address legacy emissions. Global assessments of this technology have failed to integrate factors that affect net capture and removal cost, including ambient conditions like temperature and humidity, as well as emission factors of electricity and natural gas systems.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Indian Institute of Technology-Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India.
Observation-based verification of regional/national methane (CH) emission trends is crucial for transparent monitoring and mitigation strategy planning. Although surface observations track the global and sub-hemispheric emission trends well, their sparse spatial coverage limits our ability to assess regional trends. Dense satellite observations complement surface observations, offering a valuable means to validate emission trends, especially in regions where emissions changes are substantial but debated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic.
Bulk properties of two-phase systems comprising methane and liquid p-xylene were derived experimentally using neutron imaging and theoretically predicted using molecular dynamics (MD). The measured and predicted methane diffusivity in the liquid, Henry's law constant, apparent molar volume, and surface tension compared well within the experimentally studied conditions (273.15 to 303.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!