In this paper a self-opening intrafascicular neural interface (SELINE) has been modeled using both a theoretical approach and a Finite Element (FE) analysis. This innovative self opening interface has several potential advantages such as: higher selectivity due to its three-dimensional structure and efficient anchorage system. Mechanical, structural and micro-technological issues have been considered to obtain an effective design of the electrode, as a feasibility study of the self-opening approach. A simple framework has been provided to model the insertion and partial retraction into peripheral nerves, resulting in the opening of wings. This integrated approach results in a rational procedure to optimize kinematics, geometry, and structural properties of peripheral interfaces. The design and feasibility study carried out in this work can potentially assure a correct behavior and dimensioning of the neural interface: in this way anomalous breakage should be avoided while mechanical and geometrical biocompatibility should increase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2011.06.001 | DOI Listing |
iScience
January 2025
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran.
Microsaccades, a form of fixational eye movements, help maintain visual stability during stationary observations. This study examines the modulation of microsaccadic rates by various stimulus categories in monkeys and humans during a passive viewing task. Stimulus sets were grouped into four primary categories: human, animal, natural, and man-made.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, N-1433 AS, Norway.
Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Information Science and Technology, Fudan University, Shanghai 200433, China.
To date, various kinds of memristors have been proposed as artificial neurons and synapses for neuromorphic computing to overcome the so-called von Neumann bottleneck in conventional computing architectures. However, related working principles are mostly ascribed to randomly distributed conductive filaments or traps, which usually lead to high stochasticity and poor uniformity. In this work, a heterostructure with a two-dimensional WS monolayer and a ferroelectric PZT film were demonstrated for memristors and artificial synapses, triggered by in-plane ferroelectric polarization.
View Article and Find Full Text PDFJ Neurosci
January 2025
The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA
Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents.
View Article and Find Full Text PDFNeural Netw
January 2025
Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; Center of Intelligent Computing, School of Mathematics, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Event-related potentials (ERPs) can reveal brain activity elicited by external stimuli. Innovative methods to decode ERPs could enhance the accuracy of brain-computer interface (BCI) technology and promote the understanding of cognitive processes. This paper proposes a novel Multi-Scale Pyramid Squeeze Attention Similarity Optimization Classification Neural Network (MS-PSA-SOC) for ERP Detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!