The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2011.05.018 | DOI Listing |
ACS Nano
January 2025
Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.
View Article and Find Full Text PDFAdv Appl Bioinform Chem
January 2025
Department of Information Technology, Mutah University, Al-Karak, Jordan.
Purpose: The incidence of cancer, which is a serious public health concern, is increasing. A predictive analysis driven by machine learning was integrated with haematology parameters to create a method for the simultaneous diagnosis of several malignancies at different stages.
Patients And Methods: We analysed a newly collected dataset from various hospitals in Jordan comprising 19,537 laboratory reports (6,280 cancer and 13,257 noncancer cases).
Front Parasitol
April 2024
National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, China.
Background: Malaria is one of the leading causes of morbidity and/or mortality in tropical Africa. The spread and development of resistance to chemical antimalarial drugs and the relatively high cost of the latter are problems associated with malaria control and are reasons to promote the use of plants to meet healthcare needs to treat malaria. The aim of this study was to evaluate antiplasmodial activities of extracts of (Mah quat), which is traditionally used for the treatment of malaria in the western region of Cameroon.
View Article and Find Full Text PDFFront Parasitol
October 2024
Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
Background: Schistosomiasis is caused by infection with parasitic worms and affects more than 250 million people globally. The detection of schistosome derived circulating cathodic and anodic antigens (CCA and CAA) has proven highly valuable for detecting active infections, causing both intestinal and urinary schistosomiasis.
Aim: The combined detection of CCA and CAA was explored to improve accuracy in detecting infections.
Exp Ther Med
February 2025
Department of Hematology, Etlik City Hospital, Ankara 06170, Turkey.
Whilst severe liver dysfunction is rarely encountered at the time of diagnosis for patients with acute myeloid leukemia (AML), mild elevations aminotransferase (<5 times the upper limit of normal) may be more frequently seen. Liver dysfunction at the time of diagnosis of AML is a parameter that requires investigation and can assist the clinicians in predicting prognosis. The aim of the present study was to investigate liver dysfunction at the time of diagnosis using the assoicated parameters in patients with AML.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!