Introduction: Affibody molecules are small (∼6.5 kDa) scaffold proteins suitable for radionuclide imaging of tumor-associated molecular targets. Site-specific labeling of Affibody molecules made by peptide synthesis can be achieved by coupling a chelator to N-terminus in the last synthesis step. The goal of this study was to evaluate the influence of a 6-aminohexanoic linker between DOTA and Z(HER2:342) on targeting properties of (111)In-labeled conjugate.
Methods: A DOTA-conjugated 6-aminohexanoic linker-containing variant of Z(HER2:342) (ABY-003) was produced by peptide synthesis, and the in vitro binding affinity, specificity and cellular processing were evaluated. The biodistribution of (111)In-ABY-003 in normal mice was compared to (111)In-ABY-002 (DOTA-Z(HER2:342-pep2)) lacking the linker. Tumor-targeting properties of (111)In-ABY-003 were evaluated in mice bearing HER2-expressing xenografts.
Results: The dissociation constant of ABY-003 was in the low picomolar range, slightly higher than for ABY-002. (111)In-ABY-003 bound specifically to HER2-expressing cells in vitro. The cellular retention was efficient but slightly worse than for (111)In-ABY-002. In normal mice, the clearance of (111)In-ABY-003 from blood and other tissues was slightly but significantly faster compared to (111)In-ABY-002. Targeting of HER2-expressing xenografts by (111)In-ABY-003 was receptor-specific. Due to faster clearance, the tumor-to-blood ratio for (111)In-ABY-003 at 4 h postinjection was improved compared to (111)In-ABY-002. The capacity of (111)In-ABY-003 to visualize HER2-expressing tumors was confirmed by gamma camera imaging.
Conclusions: A 6-aminohexanoic linker between the DOTA chelator and N-terminus of synthetic Z(HER2:342) had a measurable effect on affinity, cellular retention of radioactivity and blood clearance. The linker might be used for modulation of targeting properties of Affibody molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nucmedbio.2010.11.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!