Several studies have demonstrated that the myenteric plexus experiences quantitative and morphometric changes in rats inoculated orally with Toxoplasma gondii. This paper aims to verify if these alterations are also seen when the same animals are inoculated intraperitoneally with the parasite. In order to do that, six Wistar rats (Rattus norvegicus) 60 days of age were infected intraperitoneally with 10(6) tachyzoites of a genotype I T. gondii strain (BTU IV). After 60 days, the animals were anaesthetised and underwent laparotomy. All organs from the small and large intestines were removed, measured, dissected and underwent whole-mount Giemsa technique to stain the neurons in the myenteric plexus. A quantitative and morphometric analysis of these cells was made, and it showed that the parasite causes the death of myenteric neurons in the jejunum and morphometric alterations in these cells throughout the intestine. However, the cellular response of myenteric neurons to T. gondii is heterogeneous compared the different organs from the gut.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2011.06.008DOI Listing

Publication Analysis

Top Keywords

myenteric neurons
12
quantitative morphometric
12
toxoplasma gondii
8
morphometric alterations
8
myenteric plexus
8
myenteric
5
gondii myenteric
4
neurons
4
neurons intraperitoneally
4
intraperitoneally inoculated
4

Similar Publications

Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.

View Article and Find Full Text PDF

Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.

View Article and Find Full Text PDF

Background: Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!