Background: Personalized health-care promises tailored health-care solutions to individual patients based on their genetic background and/or environmental exposure history. To date, disease prediction has been based on a few environmental factors and/or single nucleotide polymorphisms (SNPs), while complex diseases are usually affected by many genetic and environmental factors with each factor contributing a small portion to the outcome. We hypothesized that the use of random forests classifiers to select SNPs would result in an improved predictive model of asthma exacerbations. We tested this hypothesis in a population of childhood asthmatics.

Methods: In this study, using emergency room visits or hospitalizations as the definition of a severe asthma exacerbation, we first identified a list of top Genome Wide Association Study (GWAS) SNPs ranked by Random Forests (RF) importance score for the CAMP (Childhood Asthma Management Program) population of 127 exacerbation cases and 290 non-exacerbation controls. We predict severe asthma exacerbations using the top 10 to 320 SNPs together with age, sex, pre-bronchodilator FEV1 percentage predicted, and treatment group.

Results: Testing in an independent set of the CAMP population shows that severe asthma exacerbations can be predicted with an Area Under the Curve (AUC)=0.66 with 160-320 SNPs in comparison to an AUC score of 0.57 with 10 SNPs. Using the clinical traits alone yielded AUC score of 0.54, suggesting the phenotype is affected by genetic as well as environmental factors.

Conclusions: Our study shows that a random forests algorithm can effectively extract and use the information contained in a small number of samples. Random forests, and other machine learning tools, can be used with GWAS studies to integrate large numbers of predictors simultaneously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148549PMC
http://dx.doi.org/10.1186/1471-2350-12-90DOI Listing

Publication Analysis

Top Keywords

random forests
20
severe asthma
16
asthma exacerbations
16
genome wide
8
wide association
8
association study
8
predict severe
8
forests classifiers
8
environmental factors
8
auc score
8

Similar Publications

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

Knee osteoarthritis (KOA) represents a progressive degenerative disorder characterized by the gradual erosion of articular cartilage. This study aimed to develop and validate biomarker-based predictive models for KOA diagnosis using machine learning techniques. Clinical data from 2594 samples were obtained and stratified into training and validation datasets in a 7:3 ratio.

View Article and Find Full Text PDF

Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering.

Sci Rep

January 2025

Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam-si, 13120, Republic of Korea.

Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.

View Article and Find Full Text PDF

In the face of forest fire emergencies, fast and efficient dispatching of rescue vehicles is an important means of mitigating the damage caused by forest fires, and is an effective method of avoiding secondary damage caused by forest fires, minimizing the damage caused by forest fires to the ecosystem, and mitigating the losses caused by economic development. this paper takes the actual problem as the starting point, constructs a reasonable mathematical model of the problem, for the special characteristics of the emergency rescue vehicle scheduling problem of forest fires, taking into account the actual road conditions in the northern pristine forest area, through the analysis of the cost of paths between the forest area and the highway, to obtain the least obstructed rescue paths, to narrow the gap between the theoretical model and the problem of the actual. Improvement of ordinary genetic algorithm, design of double population strategy selection operation, the introduction of chaotic search initialization population, to improve the algorithm's solution efficiency and accuracy, through the northern pristine forest area of Daxing'anling real forest fire cases and generation of large-scale random fire point simulation experimental test to verify the effectiveness of the algorithm, to ensure that the effectiveness and reasonableness of the solution to the problem of forest fire emergency rescue vehicle scheduling program.

View Article and Find Full Text PDF
Article Synopsis
  • Depression treatment effectiveness differs greatly among individuals, highlighting the need for objective biomarkers that can accurately predict therapy outcomes to improve treatment efficiency.
  • This study used functional near-infrared spectroscopy (fNIRS) combined with clinical assessments to explore whether machine learning techniques could forecast treatment responses in patients with major depressive disorder (MDD).
  • Findings revealed that changes in total hemoglobin levels in a specific brain region (dlPFC) correlated significantly with treatment response, and the fNIRS-only model demonstrated better predictive accuracy compared to a model that also included clinical data.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!