Interleukin-23 (IL-23) is important for T helper type 17 (Th17) responses and strategies to regulate IL-23 in human dendritic cells (DC) are limited. This study describes a novel means to control IL-23 secretion by conditioning DC with a phosphatidyl inositol 3-kinase inhibitor Wortmannin (WM). Treatment of monocyte-derived DC with WM increased Toll-like receptor (TLR) -dependent IL-23 secretion 10-fold and IL-12p70 twofold, but IL-27 was unaffected. The effect of WM was restricted to TLR3/4 pathways, did not occur through TLR2, TLR7/8 or Dectin-1, and was characterized by increased p19, p35 and p40 transcription. These responses were not solely dependent on phosphatidyl inositol 3-kinase as the alternative inhibitor LY294002 did not modulate IL-23 production. The normal patterns of activation of mitogen-activated protein kinase pathways were unaffected by WM-conditioning but IL-23 secretion required p38, ERK and JNK pathways. Importantly, this effect was manifest in populations of blood DC. Conditioning freshly isolated myeloid DC with WM before TLR3 or TLR4 triggering resulted in high levels of IL-23 secretion and an absence of IL-12p70. These WM-conditioned myeloid DC were highly effective at priming Th17 responses from naive CD4(+) T cells. Our findings provide a novel means to generate IL-23-rich environments and Th17 responses and suggest as yet unidentified regulatory factors, identification of which will provide new approaches to control IL-23-dependent immunity in infectious disease, autoimmunity and malignancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173695PMC
http://dx.doi.org/10.1111/j.1365-2567.2011.03467.xDOI Listing

Publication Analysis

Top Keywords

il-23 secretion
16
th17 responses
12
human dendritic
8
dendritic cells
8
helper type
8
phosphatidyl inositol
8
inositol 3-kinase
8
il-23
7
novel approach
4
approach interleukin-23
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!