2-Chloroethylisocyanate has been studied in a thorough way. NMR, Raman, FTIR, and Ar-matrix vibrational spectra of the molecule are presented and discussed with the complement of ab initio and DFT methods. The spectroscopic results reveal the existence of anti and gauche conformers that are equally populated in the gas phase. Thermal decomposition between 393 and 648 K shows two different pathways depending on the temperature, which can be interpreted in terms of simple second- and first-order mechanisms, respectively. Quantum mechanical calculations reproduce the experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp2036197 | DOI Listing |
Polymers (Basel)
January 2025
Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia.
Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood.
View Article and Find Full Text PDFMolecules
January 2025
Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland.
The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The "grafting from" method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.
View Article and Find Full Text PDFMolecules
January 2025
Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Safety Engineering and Civil Protection, Fire University, 52/54 Slowackiego Street, 01-629 Warsaw, Poland.
The main purpose of this article was to determine the smoke-generating and thermal properties of selected types of natural leather. Differences in the amount of smoke generated from the type of finish used in the technological processing of leather were observed. Research has shown that the burnt nubuck (367) sample with exposure at the heat flux intensity of 25 kW/m without the presence of a pilot burner flame achieved the highest value of the specific optical density D.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Lukasiewicz Research Network-Institute of Aviation, 110/114 Krakowska Avenue, 02-256 Warsaw, Poland.
Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by different amounts (5-15 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!