We report on the electronic structure of poly[2,6-(4,4-bis- (2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), a promising low-band-gap donor material for efficient bulk heterojunction organic solar cells. Electronic properties of interfaces formed between PCPDTBT and prototypical electrodes [Au, indium-tin-oxide and poly(ethylene-dioxythiophene): poly(styrenesulfonate)], obtained from X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy, are evaluated. The formation of interface dipoles is observed, and their consequences for device performance are discussed. For the system PCPDTBT/Au chemical interactions occur, which may affect in particular the charge extraction at the corresponding interface.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201000999DOI Listing

Publication Analysis

Top Keywords

photoemission spectroscopy
12
electronic properties
8
properties interfaces
8
pcpdtbt prototypical
8
prototypical electrodes
8
interfaces pcpdtbt
4
electrodes studied
4
studied photoemission
4
spectroscopy report
4
report electronic
4

Similar Publications

Direct View of Gate-Tunable Miniband Dispersion in Graphene Superlattices Near the Magic Twist Angle.

ACS Nano

January 2025

Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark.

Superlattices from twisted graphene mono- and bilayer systems give rise to on-demand many-body states such as Mott insulators and unconventional superconductors. These phenomena are ascribed to a combination of flat bands and strong Coulomb interactions. However, a comprehensive understanding is lacking because the low-energy band structure strongly changes when an electric field is applied to vary the electron filling.

View Article and Find Full Text PDF

Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.

View Article and Find Full Text PDF

Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.

View Article and Find Full Text PDF

Quantifying the number of active sites is a crucial aspect in the performance evaluation of single metal-atom electrocatalysts. A possible realization is using adsorbing gas molecules that selectively bind to the single-atom transition metal and then probing their surface density using spectroscopic tools. Herein, using in situ X-ray photoelectron (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy, we detect adsorbed CO gas molecules on a FeNC oxygen reduction single atom catalyst.

View Article and Find Full Text PDF

Direct Click Bonding of Dissimilar Solid Materials Based on the Catalyst-Free Huisgen 1,3-Dipolar Cycloaddition.

Macromol Rapid Commun

January 2025

Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.

Here, "direct click bonding" of solid materials is proposed, which is the direct bonding of solid surfaces via the formation of covalent bonds without any adhesive. The present study shows that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between solid surfaces displaying cyclooctyne and azide groups, and it achieved the strong bonding of dissimilar solid materials as a macroscopic reaction. The bonding strength obtained is sufficiently high for practical use, and the strength can be controlled by the surface density of the cyclooctyne groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!