Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose an efficient scheme for the robust and controlled generation of beating signals in a sample of stationary atoms driven into the tripod configuration. This scheme relies on an asymmetric procedure of light storage and retrieval where the two classical coupling fields have equal detunings in the storage stage but opposite detunings in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into two spin coherence wave-packets and then retrieved with two optical components characterized by different time-dependent phases. Therefore the retrieved quantum probe field exhibits a series of maxima and minima (beating signals) in intensity due to the alternative constructive and destructive interference. This interesting phenomenon involves in fact the coherent manipulation of two dark-state polaritons and may be explored to achieve the fast quantum limited measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.011832 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!