Adsorption states of the self-assembly of NH(3) molecules on the Si(001) surface are investigated using density-functional theory calculations. H-bond interactions between incoming and adsorbed NH(3) molecules produce a strong attractive potential field for the incoming molecules. Induced by the H bonds, physisorption states are formed on the adsorbed NH(3). Molecular adsorption states are formed on a buckled-down Si atom near the adsorbed NH(3). Various physisorption, molecular and dissociative adsorption configurations are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/6/064237DOI Listing

Publication Analysis

Top Keywords

adsorption states
12
nh3 molecules
12
adsorbed nh3
12
states self-assembly
8
self-assembly nh3
8
molecules si001
8
si001 surface
8
states formed
8
nh3
5
adsorption
4

Similar Publications

Corrosion inhibitors are widely used to mitigate safety risks and economic losses in engineering, yet post-adsorption processes remain underexplored. In this study, we employed density functional theory calculations with a periodic model to investigate the dissociation mechanisms of imidazole on the Fe(100) surface. Imidazole was found to adsorb optimally in a parallel orientation, with an adsorption energy of -0.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.

View Article and Find Full Text PDF

Asymmetric electronic distribution induced enhancement in photocatalytic CO-to-CH conversion via boron-doped covalent triazine frameworks.

J Colloid Interface Sci

January 2025

Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Minhou, Fujian 350108, China. Electronic address:

Covalent triazine frameworks (CTFs) are emerging as promising platform for photocatalysis, yet their highly symmetric structure leads to significant charge recombination. Herein, we employed a facile non-metallic boron (B) modification with precisely controlled doping site to introduce asymmetric local electron distribution in CTFs, achieving a 15-fold activity enhancement for CO-to-CH conversion. Calculations including frontier orbitals, dipole moments and molecular electrostatic potentials firmly demonstrated the formation of localized polarized electron regions in CTF-1 via B doping.

View Article and Find Full Text PDF

Chemistry for water treatment under nanoconfinement.

Water Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.

The global freshwater crisis, exacerbated by escalating pollution, poses a significant threat to human health. Addressing this challenge required innovative strategies to develop highly efficient and process-adaptable materials for water decontamination. In this regard, nanomaterials with confinement structures have emerged as a promising solution, outperforming traditional nanomaterials in terms of efficiency, selectivity, stability, and process adaptability, thereby serving as an ideal platform for designing novel functional materials for sustainable water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!