Raman-active modes in homogeneous and inhomogeneous bundles of single-walled carbon nanotubes.

J Phys Condens Matter

Laboratoire de Physique des matériaux et Modélisation des Systèmes, Université Moulay Ismaïl, Faculté des Sciences, BP 11201, Zitoune, 50000 Meknès, Morocco.

Published: January 2009

In the present work, the non-resonant Raman-active modes are calculated for several diameters, chiralities and sizes for homogeneous and inhomogeneous bundles of single-walled carbon nanotubes (BWCNTs), using the spectral moment's method (SMM). Additional intense Raman-active modes are present in the breathing-like modes (BLM) spectra of these systems in comparison with a single fully symmetric A(1g) mode characteristic of isolated nanotubes (SWCNTs). The dependence of the wavenumber of these modes in terms of diameters, lengths and number of tubes was investigated. We found that, for a finite (in)homogeneous bundle, additional breathing-like modes appear as a specific signature.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/4/045302DOI Listing

Publication Analysis

Top Keywords

raman-active modes
12
homogeneous inhomogeneous
8
inhomogeneous bundles
8
bundles single-walled
8
single-walled carbon
8
carbon nanotubes
8
breathing-like modes
8
modes
5
modes homogeneous
4
nanotubes work
4

Similar Publications

Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc.

View Article and Find Full Text PDF

Coherent Anti-Stokes Hyper-Raman Spectroscopy.

Nat Commun

January 2025

Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.

Coherent Raman scattering spectroscopies have been established as a powerful tool for investigating molecular systems with high chemical specificity. The existing coherent Raman scattering techniques detect only Raman active modes, which are a part of the whole molecular vibrations. Here, we report the first observation of coherent anti-Stokes hyper-Raman scattering (CAHRS) spectroscopy, which allows measuring hyper-Raman active vibrations at high speed.

View Article and Find Full Text PDF

The breaking of inversion symmetry combined with spin-orbit coupling, can give rise to intriguing quantum phases and collective excitations. Here, we report systematic temperature dependent Raman scattering and theoretical calculations of phonon modes across the inversion symmetry-breaking structural transitions in a quasi-one-dimensional compound (TaSe)I. Our investigation revealed the emergence of three additional Raman-active modes in Raman spectra of the low-temperature non-centrosymmetric (NC) structure of the material.

View Article and Find Full Text PDF

The intrinsic temperature dependence of Raman-active modes in carbon nanotubes (CNTs), particularly the radial breathing mode (RBM), has been a topic of a long-standing controversy. In this study, we prepared suspended individual CNTs to investigate how their Raman spectra depend on temperature and to understand the effects of environmental conditions on this dependency. We analyzed the intrinsic temperature dependence of the main Raman-active modes, including the RBM, the moiré-activated R feature, and the G-band in double-walled carbon nanotubes (DWCNT) and single-walled carbon nanotubes (SWCNTs) after complete desorption of air.

View Article and Find Full Text PDF

The role of IR inactive mode in W(CO) polariton relaxation process.

Nanophotonics

May 2024

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.

Vibrational polaritons have shown potential in influencing chemical reactions, but the exact mechanism by which they impact vibrational energy redistribution, crucial for rational polariton chemistry design, remains unclear. In this work, we shed light on this aspect by revealing the role of solvent phonon modes in facilitating the energy relaxation process from the polaritons formed of a mode of W(CO) to an IR inactive mode. Ultrafast dynamic measurements indicate that along with the direct relaxation to the dark modes, lower polaritons also transition to an intermediate state, which then subsequently relaxes to the mode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!