An inhibition enzyme electrode to measure toxic gases can be constructed using the respiratory enzyme cytochrome oxidase. The rate of enzyme turnover is followed by reducing cytochrome c on a gold electrode modified with the mediator bis(4-pyridyl) disulphate. The kinetics and mechanism of the system have been measured. The electrochemical kinetics for the oxidation of cytochrome c have been studied by rotating disc voltammetry and are shown to obey the Koutecky-Levich equation. The standard electrochemical rate constant is found to be 3 x 10(-3) cms-1. At ambient oxygen concentration the orders of the current with respect to the concentration of cytochrome oxidase, cytochrome c and oxygen are found to be 1/2, 1/2 and zero respectively. These orders are consistent with the rate limiting step being the turnover of the enzyme under saturated conditions in a thin reaction layer close to the electrode. At lower oxygen concentrations a good fit between the experimental results and a theoretical model further confirms the assignation of the mechanism. The rate constants describing the oxidation and reduction of the enzyme have been measured. The pH dependence of the current has been studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0956-5663(90)80017-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!