We introduce an ultrasensitive label-free detection technique based on asymmetric Fano resonances in plasmonic nanoholes with far reaching implications for point-of-care diagnostics. By exploiting extraordinary light transmission phenomena through high-quality factor (Q(solution) ∼ 200) subradiant dark modes, we experimentally demonstrate record high figures of merits (FOMs as high as 162) for intrinsic detection limits surpassing that of the gold standard prism coupled surface-plasmon sensors (Kretschmann configuration). Our experimental record high sensitivities are attributed to the nearly complete suppression of the radiative losses that are made possible by the high structural quality of the fabricated devices as well as the subradiant nature of the resonances. Steep dispersion of the plasmonic Fano resonance profiles in high-quality plasmonic sensors exhibit dramatic light intensity changes to the slightest perturbations within their local environment. As a spectacular demonstration of the extraordinary sensitivity and the quality of the fabricated biosensors, we show direct detection of a single monolayer of biomolecules with naked eye using these Fano resonances and the associated Wood's anomalies. To fabricate high optical-quality sensors, we introduce a high-throughput lift-off free evaporation fabrication technique with extremely uniform and precisely controlled nanofeatures over large areas, leading to resonance line-widths comparable to that of the ideally uniform structures as confirmed by our time-domain simulations. The demonstrated label-free sensing platform offers unique opportunities for point-of-care diagnostics in resource poor settings by eliminating the need for fluorescent labeling and optical detection instrumentation (camera, spectrometer, etc.) as well as mechanical and light isolation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141965 | PMC |
http://dx.doi.org/10.1073/pnas.1101910108 | DOI Listing |
Phys Rev Lett
December 2024
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Engineering Department, Kuwait University, 13060, Kuwait City, Kuwait.
This article reports an Ultra wideband nano scale metamaterial absorber with ultrathin and flexible feature for visible spectrum applications. The absorber investigated for dispersion and Fano resonance characteristics to achieve metamaterial properties as well as independent of asymmetry of structure. Maximum visible spectrum wave interaction with the cascaded split nano square meta atom also ensured to achieve the absorption at highest percentage in numerical evaluation.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.
The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan.
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China.
Piezoelectric resonance sensors are essential to many diverse applications associated with chemical and biological sensing. In general, they rely on continuously detecting the resonant frequency shift of piezoelectric resonators due to analytes accreting on their surfaces in vacuum, gas or fluid. Resolving the small analyte changes requires the resonators with a high quality factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!