Chondroitin sulfate is a linear polysaccharide of alternating D-glucuronic acid and N-acetyl-D-galactosamine residues with sulfate groups at various positions of the sugars. It interacts with and regulates cytokine and growth factor signal transduction, thus influencing development, organ morphogenesis, inflammation, and infection. We found chondroitinase activity in medium conditioned by baculovirus-infected insect cells and identified a novel chondroitinase. Sequence analysis revealed that the enzyme was a truncated form of occlusion-derived virus envelope protein 66 (ODV-E66) of Autographa californica nucleopolyhedrovirus. The enzyme was a novel chondroitin lyase with distinct substrate specificity. The enzyme was active over a wide range of pH (pH 4-9) and temperature (30-60 °C) and was unaffected by divalent metal ions. The ODV-E66 truncated protein digested chondroitin most efficiently followed by chondroitin 6-sulfate. It degraded hyaluronan to a minimal extent but did not degrade dermatan sulfate, heparin, and N-acetylheparosan. Further analysis using chemo-enzymatically synthesized substrates revealed that the enzyme specifically acted on glucuronate residues in non-sulfated and chondroitin 6-sulfate structures but not in chondroitin 4-sulfate structures. These results suggest that this chondroitinase is useful for detailed structural and compositional analysis of chondroitin sulfate, preparation of specific chondroitin oligosaccharides, and study of baculovirus infection mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190710 | PMC |
http://dx.doi.org/10.1074/jbc.M111.251157 | DOI Listing |
J Virus Erad
December 2024
HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Medicine - Endocrinology, Baylor College of Medicine, Houston, Texas, USA.
The cardioprotective effects of histone deacetylase (HDAC) inhibitors (HDIs) are at odds with the deleterious effects of HDAC depletion. Here, we use HDAC3 as a prototype HDAC to address this contradiction. We show that adult-onset cardiac-specific depletion of HDAC3 in mice causes cardiac hypertrophy and contractile dysfunction on a high-fat diet (HFD), excluding developmental disruption as a major reason for the contradiction.
View Article and Find Full Text PDFJ Integr Bioinform
January 2025
Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia.
The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan USA.
Plastid-localized plastoglobules (PGs) are monolayer lipid droplets typically associated with the outer envelope of thylakoid membranes in chloroplasts. The size and number of PGs can vary significantly in response to different environmental stimuli. Since the early 21st century, a variety of proteins attached to the surface of PGs have been identified and experimentally characterized using advanced biotechnological techniques, revealing their biological functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!