Novel nanocomposite materials where iron nanoparticles are embedded into the walls of a macroporous polymer were produced and their efficiency for the removal of As(III) from aqueous media was studied. Nanocomposite gels containing α-Fe(2)O(3) and Fe(3)O(4) nanoparticles were prepared by cryopolymerisation resulting in a monolithic structure with large interconnected pores up to 100 μm in diameter and possessing a high permeability (ca. 3 × 10(-3) ms(-1)). The nanocomposite devices showed excellent capability for the removal of trace concentrations of As(III) from solution, with a total capacity of up to 3mg As/g of nanoparticles. The leaching of iron was minimal and the device could operate in a pH range 3-9 without diminishing removal efficiency. The effect of competing ions such as SO(4)(2-) and PO(4)(3-) was negligible. The macroporous composites can be easily configured into a variety of shapes and structures and the polymer matrix can be selected from a variety of monomers, offering high potential as flexible metal cation remediation devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2011.06.003 | DOI Listing |
Biomed Phys Eng Express
January 2025
Ingeniería y Tecnología, Universidad Nacional Autonoma de Mexico Facultad de Estudios Superiores Cuautitlan, Av. 1o de Mayo S/N, Santa María las Torres, Campo Uno, 54740 Cuautitlán Izcalli, Edo. de Méx., Cuautitlan Izcalli, Estado de México, 54740, MEXICO.
Hemodialysis is a crucial procedure for removing toxins and waste from the body when kidneys fail to perform this function effectively. This study addresses the need to improve the efficiency and biocompatibility of membranes used in dialyzers. We simulate fluid flow through two types of membranes, Cuprophan (cellulosic) and AN69ST (synthetic), to understand the complex mechanisms involved and quantify key variables such as pressure, concentration, and flow.
View Article and Find Full Text PDFEnviron Technol
January 2025
Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu, People's Republic of China.
The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.
View Article and Find Full Text PDFPsychol Rev
January 2025
Department of Cognitive Science, University of California, San Diego.
It has long been hypothesized that episodic memory supports adaptive decision making by enabling mental simulation of future events. Yet, attempts to characterize this process are surprisingly rare. On one hand, memory research is often carried out in settings that are far removed from ecological contexts of decision making.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
We have demonstrated that the cellular protein M-Sec promotes the transmission of human T-cell leukemia virus type 1 (HTLV-1) in vitro and in vivo. Here, we show how HTLV-1 utilizes M-Sec for its efficient transmission. HTLV-1-infected CD4+ T cells expressed M-Sec at a higher level than uninfected CD4+ T cells.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.
The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!