Functions of the cytoplasmic exosome.

Adv Exp Med Biol

Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, Texas, USA.

Published: April 2016

The exosome consists of a core of ten essential proteins that includes the ribonuclease Rrp44p and is present in both the cytoplasm and nucleus of eukaryotic cells. The cytoplasmic exosome has been extensively characterized in the budding yeast Saccharomyces cerevisiae and some characterization of its metazoan counterpart indicates that most functional aspects are conserved. These studies have implicated the cytoplasmic exosome in the turnover of normal cellular mRNAs, as well as several mRNA surveillance pathways. For this, the exosome needs a set of four proteins that do not partake in nuclear exosome functions. These cofactors presumably direct the exosome to specific cytoplasmic RNA substrates. Here, we review cofactors and functions of the cytoplasmic exosome and provide unanswered questions on the mechanisms of cytoplasmic exosome function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4419-7841-7_7DOI Listing

Publication Analysis

Top Keywords

cytoplasmic exosome
20
exosome
9
functions cytoplasmic
8
cytoplasmic
5
exosome exosome
4
exosome consists
4
consists core
4
core ten
4
ten essential
4
essential proteins
4

Similar Publications

Fibroblasts play a crucial role in diabetic wound healing, and their senescence is the cause of delayed wound repair. It was reported that fibroblasts can secrete exosomes that can mediate a vital role in diabetic complications. Our purpose is to examine the biological function of high glucose (HG)-induced senescent fibroblasts from the perspective of exosomes and reveal the mechanism at cellular and animal levels.

View Article and Find Full Text PDF

Periodontal disease is a highly prevalent disease worldwide that seriously affects people's oral health, including gingivitis and periodontitis. Although the current treatment of periodontal disease can achieve good control of inflammation, it is difficult to regenerate the periodontal supporting tissues to achieve a satisfactory therapeutic effect. In recent years, due to the good tissue regeneration ability, the research on Mesenchymal stromal/stem cells (MSCs) and MSC-derived exosomes has been gradually deepened, especially its ability to interact with the microenvironment of the body in the complex immunoregulatory network, which has led to many new perspectives on the therapeutic strategies for many diseases.

View Article and Find Full Text PDF

Aim: The exosomal programmed death ligand-1(exoPD-L1) has recently become a topic of interest in the field of oncology. But the prognostic role of exoPD-L1 in cancer patients is inconsistent across previous studies. Therefore, a quantitative meta-analysis was performed to evaluate the prognostic and clinicopathological value of exoPD-L1 in cancer patients.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), also known as microribonucleic acids, are small molecules found in specific tissues that are essential for maintaining proper control of genes and cellular processes. Environmental factors, such as physical exercise, can modulate miRNA expression and induce targeted changes in gene transcription. This article presents an overview of the present knowledge on the principal miRNAs influenced by physical activity in different tissues and bodily fluids.

View Article and Find Full Text PDF

The aim of present study was to evaluate the impact of perimenopause on insulin resistance. Specifically, insulin sensitivity was assessed in a perimenopausal mouse model treated with 4-vinylcyclohexene diepoxide (VCD), together with the changes in exosomal miRNA and hepatic mRNA expression profiles. Homeostasis model assessment of insulin resistance (HOMA-IR) was utilized to assess the status of insulin resistance, and insulin action was evaluated during menopausal transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!