The present study evaluated the possible effect and mechanism of action of interleukin-1 beta in regulating the release of corticotropin-releasing factor and adrenocorticotropin hormone from human cultured placental cells. With the use of a primary monolayer culture of human placental cells at term, the addition of interleukin-1 beta increased the release of immunoreactive corticotropin-releasing factor with a dose- and time-dependent effect. The intracellular concentration of both cyclic adenosine monophosphate and cyclic guanosine monophosphate increased in the presence of interleukin-1 beta. The addition of indomethacin, a prostaglandin synthesis inhibitor, partially reversed the effect of interleukin-1 beta. The same doses of interleukin-1 beta stimulated the release of adrenocorticotropin hormone and this effect was partially reversed by the addition of a synthetic corticotropin-releasing factor antagonist or by indomethacin. This study showed that interleukin-1 beta increases the release of corticotropin-releasing factor and adrenocorticotropin hormone from cultured placental cells. This effect is associated with increased intracellular cyclic nucleotide concentrations and is in part reversed by a prostaglandin synthesis inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0002-9378(90)90711-fDOI Listing

Publication Analysis

Top Keywords

interleukin-1 beta
28
corticotropin-releasing factor
20
adrenocorticotropin hormone
16
placental cells
16
factor adrenocorticotropin
12
mechanism action
8
action interleukin-1
8
human placental
8
release corticotropin-releasing
8
cultured placental
8

Similar Publications

Objective: Osteoarthritis (OA) is the most common form of chronic joint disease, affecting mainly the elderly population. This disorder is caused by cartilage degeneration with complex changes in the chondrocyte phenotype. Inorganic pyrophosphate (PPi) was shown to counteract the detrimental effect of interleukin (IL)-1β challenging in an in vitro OA model based on rat articular chondrocytes.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Drug-resistant epilepsy in pediatric patients is associated with neuroinflammation and neurodegeneration. Vitamin D 25-OH exerts neuroprotective effects, while glial cell line- derived neurotrophic factor (GDNF) and the proinflammatory cytokine interleukin-1β (IL-1β) are implicated in the mechanisms of neuroinflammation and epileptogenesis. The aim of this study was to investigate the relationship between vitamin D 25-OH, IL-1β, and GDNF levels with seizure severity and frequency in children with drug-resistant epilepsy.

View Article and Find Full Text PDF

Endometriosis is a gynecological disorder characterized by chronic inflammation, anatomical changes, prolonged pain, and infertility. On the other hand, is recognized for its pharmacological effects, which might be beneficial in managing endometriosis. The aim of the study was to investigate the pharmacological effects of as a potential therapy for endometriosis by using an animal model.

View Article and Find Full Text PDF

Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice.

Nat Commun

January 2025

Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.

Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!