Objective: Diabetes mellitus affects every organ in the man including eyes, kidney, heart, and nervous system. Alcohol consumption is a widespread practice. As the effects of chronic alcohol consumption on diabetic state have been little studied, this study was conducted with the objective of evaluating the effect of alcohol in diabetic rats.
Materials And Methods: For this study, the rats were divided into five groups (n = 6 in each group): normal control (NC), alcohol treatment (At), diabetic control (DC), diabetic plus alcohol treatment (D + At), diabetic plus glibenclamide treatment (D + Gli). Alcohol treatment was given to the diabetic rats for 30 days. During the period the blood glucose levels, and body weight changes were observed at regular intervals. The antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels were assayed in the liver and kidney tissues.
Results: The blood glucose levels were significantly (P < 0.001) elevated and body weight significantly (P < 0.001) decreased in alcohol-treated diabetic rats. SOD and CAT activities were decreased and the MDA level increased significantly (P < 0.001) in alcohol-treated diabetic rats. Histopathological studies showed that alcohol damages the liver and kidney tissues in diabetic rats.
Conclusion: These finddings concluded that the consumption of alcohol in diabetic rats worsens the condition. So the consumption of alcohol by diabetic subjects may be potentially harmful.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113389 | PMC |
http://dx.doi.org/10.4103/0253-7613.81504 | DOI Listing |
Nutrients
January 2025
College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.
View Article and Find Full Text PDFNutrients
December 2024
Department of Pharmacognosy, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania.
Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.
View Article and Find Full Text PDFNutrients
December 2024
Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.
Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
Type 2 diabetes (T2D), the most common form, is marked by insulin resistance and β-cell failure. β-cell dysfunction under high-glucose-high-lipid (HG-HL) conditions is a key contributor to the progression of T2D. This study evaluates the comparative effects of 10 nM semaglutide, 10 nM tirzepatide, and 1 mM metformin, both alone and in combination, on INS-1 β-cell maintenance and function under HG-HL conditions.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!