The understanding of the rheological and mechanical properties of nanoparticle aggregates is important for the application of nanofillers in nanocompoistes. In this work, we report a rheological study on the rheological and mechanical properties of nano-silica agglomerates in the form of gel network mainly constructed by hydrogen bonds. The elastic model for rubber is modified to analyze the elastic behavior of the agglomerates. By this modified elastic model, the size of the network mesh can be estimated by the elastic modulus of the network which can be easily obtained by rheology. The stress to destroy the aggregates, i.e., the yield stress (σy), and the elastic modulus (G') of the network are found to be depended on the concentration of nano-silica (ϕ, wt.%) with the power of 4.02 and 3.83, respectively. Via this concentration dependent behavior, we can extrapolate two important mechanical parameters for the agglomerates in a dense packing state (ϕ = 1): the shear modulus and the yield stress. Under large deformation (continuous shear flow), the network structure of the aggregates will experience destruction and reconstruction, which gives rise to fluctuations in the viscosity and a shear-thinning behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211159 | PMC |
http://dx.doi.org/10.1186/1556-276X-6-114 | DOI Listing |
PLoS One
January 2025
Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.
Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.
View Article and Find Full Text PDFJ Fluid Mech
December 2024
Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Compiégne, France.
Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Civil Engineering Department, Düzce University, Duzce, Turkey. Electronic address:
Foods
December 2024
Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.
The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!