Purpose: Bcl2/adenovirus EIB 19 kDa-interacting protein 3 (BNIP3) is a proapoptotic member of the Bcl-2 family. To address its potential as a therapeutic target for radiosensitization, this study investigated the effect of Bnip3 expression on radiosensitivity of cervical cancer in vitro and in vivo.
Materials And Methods: In vitro: A plasmid expressing the BNIP3 gene was transfected into human cervical cancer HeLa cells using Lipofectamine(2000), and western blot and immunohistochemistry analysis were performed to evaluate the expression of BNIP3 in transfected cells. The effects on radiation-induced apoptosis were investigated using a clone formation assay and flow cytometry. In vivo: A total of 6 × 10⁶ HeLa cells were subcutaneously inoculated into the dorsal flank of nude mice, and plasmids expressing the BNIP3 gene were injected into the mice via the tail vein. Tumor volume was calculated, and immunohistochemistry was used to detect the expression of BNIP3 in tumor cells. TUNEL assays were performed to determine the apoptosis rates in tumor tissues.
Results: Transfection with the recombinant BNIP3 plasmid increased expression of the Bnip3 protein in tumor cells. This apoptosis regulator significantly decreased the viability of cells (p < 0.01) and increased the apoptosis rates (p < 0.01) both in vitro and in vivo. The antitumor effect of radiotherapy was enhanced by overexpression of BNIP3, as revealed by tumor growth curve analysis.
Conclusions: Radiosensitization in human cervical cancer cells was observed after treatment with the recombinant BNIP3 plasmid in vitro and in vivo. Results suggested that BNIP3 may play a role in enhancement of radiotherapy efficiency, and its expression may have a synergistic effect on radiation treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cbr.2010.0898 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!