Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Imprinting technique applied to membrane preparation via phase inversion methods yields membranes with enhanced affinity toward target molecules. In the imprinted membranes prepared by noncovalent approach hydrogen bond and electrostatic interactions can play a crucial role in determining the performance of these membranes. In this work, quantum mechanical calculations and experiments were performed to understand the physical-chemical causes of the affinity increase in imprinted polymeric membranes to 4,4'-methylendianiline (MDA), dissolved in an organic solvent. An ad hoc synthesized copolymer of acrylonitrile and acrylic acid was used to prepare the membranes. The calculated binding energies show that the hydrogen bonds and electrostatic interactions among polymeric chains are comparable to the strength of the same interactions occurring between polymer and MDA. Using this result and correlated experimental data, this work concluded that one of the causes responsible for the increased affinity of the imprinted membranes is the augmented availability of free carboxylic groups in the nanocavities of the membranes. However, along with this reason, the membrane pore sizes must evermore be taken into account. The knowledge acquired in this study helps us to better understand the mechanisms of molecular recognition and hence to optimize the design of new imprinted membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp2006638 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!